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Preface

Subject of fractional calculus has gained considerable popularity and importance during the past three decades, mainly due
to its validated applications in various fields of science and engineering. It deals with the differential and integral operators
with nonintegral powers. Fractional differential equations are the pillar of various systems occurring in a wide range of
science and engineering applications, namely physics, chemical engineering, mathematical biology, financial mathematics,
structural mechanics, control theory, circuit analysis, and biomechanics. The fractional derivative has also been used in
various other physical problems, such as frequency-dependent damping behavior of structures, the motion of a plate in
a Newtonian fluid, and PIλDμcontroller for the control of dynamical systems. Themathematical models in electromagnetics,
rheology, viscoelasticity, electrochemistry, control theory, Brownian motion, signal and image processing, fluid dynamics,
financial mathematics, and material science are well defined by fractional-order differential equations. Generally, these
physical models are demonstrated either by ordinary or partial differential equations. But, modeling these problems by frac-
tional differential equations sometimes makes the physics of the systems more practical. In order to know the behavior of
these systems, we need to study the solutions of the governing fractional equations. The exact solution of fractional differ-
ential equations may not always be possible using known classical methods. Generally, the physical models occurring in
nature comprise complex phenomena. So, it is challenging to get the solution (both analytical and numerical) of nonlinear
differential equations of fractional order. For the last few decades, a great deal of attention has been directed toward the
solution to these kinds of problems. Researchers throughout the globe are trying to develop various efficient methods to
handle these problems. Although there exist a variety of standard books related to the solution of fractional differential
equations and related methods. But, the existing books are method specific or subject specific or sometimes may not be
efficient. Few existing books deal with basic numerical and analytical methods for solving the fractional differential equa-
tions, whereas some other books may be found related to particular semi-analytical methods only. But, as per the authors’
knowledge, books covering the basic concepts of the computationally efficient and variety of advancedmethods in one place
in a systematic manner are rare.
As such, the authors realized the need for a book that contains traditional as well as recent numerical and analytic meth-

ods with simple example problems. With respect to student-friendly, straightforward, and easy understanding of the meth-
ods, this book may be a benchmark for the teaching/research courses for students, teachers, and industry. The present book
consists of 25 chapters giving basic knowledge of various recent and challenging procedures with respect to semi-analytical
and expansion methods. The best part of the book is that it discusses different computationally efficient and recently devel-
opedmethods for solving linear and nonlinear fractional problems for better understanding. Before we address the details of
the book, the authors consider that the readers have essential knowledge of calculus, differential equations, partial differ-
ential equation, fractional calculus, functional analysis, real analysis, and linear algebra.
Accordingly, Chapter 1 addresses the preliminaries on fractional calculus in which various important functions related to

the fractional calculus and popular differential and integral operator of fractional order have been included. Chapter 2 deals
with the various mathematical models arising in day to day life. It is worth mentioning that semi-analytical techniques
based on perturbation parameters also exist and have broad applicability. As such, the Adomian decomposition method
(ADM) for solving linear and nonlinear fractional differential equations has been presented in Chapter 3. Chapter 4 dis-
cusses the four hybrid methods, which are the coupling of various transform methods and ADM. Examples of simple linear
and nonlinear fractional differential equations have been deliberated to understand the methodologies of these four meth-
ods. In this regard, another well-known semi-analytical technique is the homotopy perturbation method (HPM). The HPM
is easy to implement for handling various types of fractional differential equations. As such, a detailed procedure of the HPM

xi



is described and applied to linear and nonlinear fractional problems in Chapter 5. Chapter 6 deals with the four hybrid
methods that combine four transform methods and HPM. These four methods are getting more popular due to their wide-
spread application for solving various fractional problems. Another important method, namely the fractional differential
transform method (FDTM), has been presented in Chapter 7. Due to some difficulties/complexity arising for solving frac-
tional problems in DTM, an advanced version of this method has been developed called the fractional reduced differential
transformmethod (FRDTM) given in Chapter 8. The main benefit of this method is that it does not require any assumption,
perturbation, and discretization for solving the fractional dynamical model. Also, less computation time is needed as com-
pared to other techniques.
Further, Chapter 9 deals with a semi-analytical method, viz., variational iteration method (VIM) for finding the approx-

imate series solution of linear and nonlinear fractional differential equations. It may be worth mentioning that themethods,
namely ADM, HPM, and VIM discussed, respectively, in Chapters 4, 5, and 9, yield approximate solutions and may produce
exact solutions depending upon the considered problem. Another powerful approximation technique, namely the weighted
residual method (WRM), is addressed in Chapter 10 for finding solutions of fractional differential equations subject to
boundary conditions. In this regard, this chapter is organized such that various WRMs, viz., collocation, least-square,
and Galerkin methods are applied for solving boundary value problems. A new challenging technique, viz., the use of
boundary characteristic orthogonal polynomials (BCOPs) in well-known methods like Galerkin, collocation, etc., have also
been introduced in Chapter 11. In Chapter 12, we have discussed the residual power series method (RPSM). Some main
characteristics of this method are (i) this technique obtains expansions of the solutions in the form of polynomials,
(ii) the solutions and all their derivatives are applicable for each arbitrary point in the given interval, and (iii) it does
not require any modification while switching from the first order to the higher order. So this technique can be applied
directly to the given system by choosing an appropriate value for the initial guess approximations. This technique needs
small computational cost with high precision and less time. Further, Chapter 13 confers the homotopy analysis method
(HAM), which is based on the coupling of the traditional perturbation method and homotopy in topology. Generally,
the HAM involves a control parameter that controls the convergent region and rate of convergence of the solution.
Four transformmethods coupled with HAM have been discussed in Chapter 14. Similarly, the q-homotopy analysis method
(q-HAM) and four transform methods coupled with q-HAM have also been presented along with simple examples in
Chapters 15 and 16, respectively.
Further, in the present day, expansion methods are getting more attention of researchers for obtaining the exact solution

of the fractional nonlinear partial differential equations. In this regard, we have discussed three reliable and efficient meth-
ods, namely (G /G)-expansion method, (G /G2)-expansion method, and (G /G,1/G)-expansion method in Chapters 17, 18,
and 19, respectively. In Chapters 20, 21, and 22, we have addressed the procedure and implementation of the modified sim-
ple equation method and Sine-Cosine and Tanh methods, respectively, to obtain the traveling wave solution of fractional
differential equations. Fractional subequation method, Exp-function method, and Exp(−φ(ξ))-expansion method and their
applications to nonlinear fractional partial differential equations have been illustrated in Chapters 23, 24, and 25,
respectively.
In view of the above, this book aims to provide basic concepts of fractional-order differential equations with various

numerical example problems as well as important applications in science and engineering systems along with the recently
developed methods in a systematic manner. The book will certainly find an important source for graduate and postgraduate
students, teachers, and researchers in colleges, universities/institutes, and industries in various sciences and engineering
fields, wherever one wants to model and analyze their physical problems.
Finally, we believe that the book may represent a new vista because it demonstrates how the most current, advanced, and

novel mathematical and computational techniques given in a series of 25 chapters can be put to effective use of fractional
calculus in fractional-order differential equations.
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1

Introduction to Fractional Calculus

1.1 Introduction

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary (non-integer) order. It is also
an area of mathematics that investigates the possibilities of using real or even complex numbers as powers of the differential
operator. This area is three centuries old compared to conventional calculus, but initially, it was not very popular. Fractional
derivatives and integrals are not local in nature, so the nonlocal distributed effects are considered. The subject of fractional
calculus has gained considerable popularity and importance during the past three decades, mainly due to its validated appli-
cations, dynamic nature, and comprehensive representation of complex nonlinear phenomena in various fields of science
and engineering. The mathematical models in electromagnetics, rheology, viscoelasticity, electrochemistry, control theory,
fluid dynamics, financial mathematics, and material science are well defined by fractional-order differential equations.

1.2 Birth of Fractional Calculus

In a letter to L’Hospital in 1695, Leibniz asked the following question: “Can the meaning of integer-order derivatives be
generalized to non-integer-order derivatives?” L’Hospital was very curious about that question and replied to Leibniz by

asking what would happen to the term
dnψ x
dxn

if n =
1
2
. In order to explain the answer to the query raised by L’Hospital,

Leibniz wrote a letter dated 30 September 1695, known as the birthday of fractional calculus, which mentioned that “It will
lead to a paradox, from which one-day useful consequences will be drawn.” This was the beginning of fractional calculus.
Many famous mathematicians, namely Liouville, Riemann, Weyl, Fourier, Abel, Lacroix, Leibniz, Grünwald, and Letnikov,
contributed to fractional calculus over the years. Recently, various types of fractional differential and integral operators have
been developed, namely the Riemann–Liouville fractional integral and derivative, Caputo fractional derivative, Grünwald–
Letnikov fractional derivative, Riesz fractional derivative, modified Riemann–Liouville derivative, and local fractional
derivative, which are all discussed in this chapter.

1.3 Useful Mathematical Functions

In order to understand various types of fractional derivatives and integrals arising in fractional calculus, we need first to
understand some necessary preliminaries and related functions used in fractional calculus. These functions include the
gamma function, the Euler psi function, incomplete gamma function, beta function, incomplete beta function, Mittag-
Leffler functions (MLFs), Mellin-Ross function, the Wright function, the error function, the hypergeometric functions
(Gauss, Kummer, and generalized hypergeometric functions), and the H-function.

1.3.1 The Gamma Function

In this section, the definitions and some properties of the gamma function have been covered. The fundamental charac-
teristic of the gamma function is just an extension of the factorial for all real numbers. It can also be defined in terms
of a complex number.

1
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Definition 1.1 The gamma function is most important in the fractional-order calculus, and it is written as (Baleanu et al.
2012; Chakraverty et al. 2020; Das 2011; Kilbas et al. 2006; Kiryakova 1993; Miller and Ross 1993; Oldham and Spanier 1974;
Podlubny 1999; Samko et al. 2002):

Γ z =

∞

0

e− xxz− 1dx, ℜ z > 0, 1 1

whereℜ(z) is the real part of the complex number z C. Equation (1.1) is convergent for all complex numbers z C (ℜ(z) >
0). The gamma function is defined everywhere on the real axis except its singular points, viz. 0, −1, −2, …. As a result, the
domain of the gamma function is … (−2,− 1) (−1, 0) (0, +∞). The graph of the gamma function is depicted in the
Figure 1.1.
Some properties of the gamma function are as follows (Chakraverty et al. 2020; Miller and Ross 1993; Podlubny 1999;

Samko et al. 2002):

i) Γ(z+ 1) = zΓ(z), for z R+.

ii) Γ z + 1 = z , Γ 1 = 1 and Γ 1
2 = π

iii) Γ
1
2
− z =

z − 4 z

2z
π and Γ

1
2
+ z =

2z
4 zz

π

iv) Γ z Γ − z =
− π

n sin πz
, Γ z Γ 1− z =

π

sin πz
, z ℵ, ℜ z < 1

Definition 1.2 (Euler psi Function)
The Euler psi function is the logarithmic derivative of the gamma function, which is defined as (Kilbas et al. 2006):

ψ z =
d
dz

logΓ z =
Γ z
Γ z

, z C, 1 2

with the following property:

ψ z + n = ψ z +
n− 1

k = 0

1
z + k

, z C,n ℵ 1 3

Definition 1.3 (Incomplete Gamma Function)
The incomplete gamma function (Herrmann 2011; Kilbas et al. 2006) is derived from Eq. (1.1) by decomposing into an inte-
gral from 0 to ω and another from ω to ∞ as:

20

10

0

–10

–4 –2 2
Г(
z)

(z)
4

Figure 1.1 The graph of gamma function in the real axis.
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γ z,ω =

ω

0

e− xx z− 1dx, z,ω C,ℜ z > 0 1 4

Γ z,ω =

∞

ω

e− xx z− 1dx, arg ω < π,ℜ z > 0 1 5

The incomplete gamma functions have the following properties
(Herrmann2011; Kilbas et al. 2006):

i) γ(z, ∞) = Γ(z, 0) = Γ(z),
ii) γ(z, ω) + Γ(z, ω) = Γ(z), ℜ(z) > 0.

1.3.2 The Beta Function

Definition 1.4 The beta function is defined as (Kilbas et al. 2006; Miller
and Ross 1993; Podlubny 1999; Samko et al. 2002):

B z,ω =

1

0

x z− 1 1− x ω− 1dx, ℜ ω , ℜ z > 0 1 6

3D plot of the beta function Eq. (1.6) has been illustrated in Figure 1.2.
Some properties of the beta function are given as follows (Kilbas et al. 2006; Miller and Ross 1993; Podlubny 1999; Samko

et al. 2002):

i) B(z, ω) = B(ω, z),

ii) B z,ω = 2

π
2

0
sin θ 2z− 1 cos θ 2ω− 1dθ, ℜ ω ,ℜ z > 0

iii) B z,ω =
∞

0

xz− 1

1 + x z + ω dx, ℜ ω ,ℜ z > 0

iv) B(z, ω) = B(z, ω+ 1) + B(z+ 1, ω),
v) B z,ω + 1 = B z,ω ω

z + ω ,

vi) B z + 1,ω = B z,ω z
z + ω ,

vii) B z,ω B z + ω, 1−ω = π
z sin πω

Note 1.1 The relationship between gamma and beta functions is written as:

B z,ω =
Γ z Γ ω

Γ z + ω

Definition 1.5 (Incomplete Beta Function)
The generalized form beta function is known as incomplete beta function, which is given as:

B z; a, b =

z

0

xa− 1 1− x b− 1dx, ℜ z > 0 1 7

It is worth mentioning that when z= 1, the incomplete beta function transforms into the beta function, which has several
applications in physics, functional analysis, and integral calculus.

1

1.0

11.2 1.21.4 1.41.6 1.6
zω

1.8 1.82

0.9
0.8
0.7
0.6
0.5

B
(z

, ω
)

0.4
0.3
0.2

Figure 1.2 The graph of beta function.

1.3 Useful Mathematical Functions 3



1.3.3 The Mittag-Leffler Function

The MLF comes from the solution of fractional-order differential equations or fractional-order integral equations. It is an
extension of exponential functions that may be expressed as a power series.

Definition 1.6 (One-Parametric Mittag-Leffler Function)
One-parameter MLF is defined as (Baleanu et al. 2012; Chakraverty et al. 2020; Das 2011; Kilbas et al. 2006; Kiryakova 1993;
Miller and Ross 1993; Oldham and Spanier 1974; Podlubny 1999; Samko et al. 2002):

Eα z =
∞

n = 0

zn

Γ 1 + nα
, for z C and α > 0 1 8

If we put α = 1 in Eq. (1.8), we obtain

E1 z =
∞

n = 0

zn

Γ 1 + n
, for z C 1 9

which is the summation form of the exponential function ez. So, MLF is an extension of the exponential function in one
parameter.

Definition 1.7 (Two-Parametric Mittag-Leffler Function)
Two-parameter representation of the MLF may be written as (Miller and Ross 1993; Podlubny 1999; Samko et al. 2002):

Eα,β z =
∞

n = 0

zn

Γ β + nα
, for z C and α, β > 0 1 10

Definition 1.8 (Generalized Mittag-Leffler Function)
The generalized MLF can be defined as (Haubold et al. 2011; Kilbas et al. 2006; Kurulay and Bayram 2012):

Eγ
α,β z =

∞

k = 0

γ n

Γ β + kα
zk

k
forℜ α ,ℜ β ,ℜ γ > 0 and z, α, β and γ C 1 11

where (γ)n is the Pochhammer symbol and is defined as

γ n =
Γ γ + n
Γ γ

=
1, n = 0, γ 0,

γ + n− 1 γ + 2 γ + 1 γ,n ℵ, γ C
1 12

Note 1.2 The derivative of the two-parametric MLF can be expressed in the form of generalized MLF as (Kilbas
et al. 2006):

dn

dzn
Eα,β z = n En + 1

α,β + α n z , n ℵ, z C 1 13

Some properties of the MLF are given as follows (Mathai and Haubold 2008):

i) Eα,β z = 1
Γ β + z Eα,α + β z ,

ii) Eα,β z = β Eα,β + 1 z + α z d
dz Eα,β + 1 z ,

iii) d
dz

m
zβ− 1Eα,β zα = zβ−m− 1 Eα,β−m zα , ℜ β−m > 0,m = 0, 1, 2,…

1.3.4 The Mellin-Ross Function

The Mellin-Ross function Et(ν, a) is obtained while evaluating the fractional derivative of an exponential function eat. Both
the incomplete gamma and MLFs are closely related to this function.
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Definition 1.9 The Mellin-Ross function is defined as (Mathai and Haubold 2008):

Et ν, a = tν
∞

k = 0

at k

Γ k + ν + 1
= tνE1,ν + 1 at 1 14

1.3.5 The Wright Function

Definition 1.10 TheWright function was proposed byWright (1993) in 1933, which is denoted byW(z; α, β) and is defined
as (Kilbas et al. 2006; Miller and Ross 1993; Podlubny 1999; Samko et al. 2002):

W z; α, β =
∞

k = 0

zk

k Γ αk + β
, α > − 1 and z, β C 1 15

Note 1.3 The Wright function can be expressed with the help of the MLF as (Kurulay and Bayram 2012):

dn

dzn
zβ− 1Eγ

α,β + rα z =
∞

k = 0

zβ− 1− n γ kW z; α, β + rα−n 1 16

1.3.6 The Error Function

Definition 1.11 The error function which is denoted by erf (z) and is defined as (Kilbas et al. 2006; Miller and Ross 1993;
Podlubny 1999; Samko et al. 2002):

erf z =
2
π

z

0

e− t2dt, z C 1 17

Some properties of the error function are given as (Miller and Ross 1993; Podlubny 1999; Samko et al. 2002):

i) Complementary error function erfc z =
2
π

∞

z

e− t2dt = 1− erf z ,

ii) erf (−z) = − erf (z),
iii) E1/2(z

1/2) = ez (1 + erf (z1/2)).

1.3.7 The Hypergeometric Function

This section discusses the definitions and characteristics of Gauss, Kummer, and generalized hypergeometric functions.
When α> 0, the following lemma gives the integral representation of Eα(z) as a Mellin–Barnes contour integral.

Lemma 1.1 For α> 0 and z C(|arg(z)| < π), the following relations hold

Eα z =
1

2π i

γ + i∞

γ− i∞

Γ s Γ 1− s
Γ 1− αs

− z − sds, 1 18

where the integration path separates all the poles s = − k (k ℵ0) to the left and all poles s = n+ 1 (n ℵ0) to the right.

Definition 1.12 (The Gauss Hypergeometric Function)
The Gauss hypergeometric function 2F1(a, b; c; z) in the unit disk is defined as the sum of hypergeometric series provided by
(Kilbas et al. 2006):

2F1 a, b; c; z =
∞

k = 0

a k b k

c k

zk

k
, 1 19

where z < 1, a, b C, c C

∖

Z −
0 ≔ 0, − 1, − 2,… and (a)k is the Pochhammer symbol defined in Eq. (1.12).
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Note 1.4 The Euler integral representation of Gauss hypergeometric function is written as:

2F1 a, b; c; z =
Γ c

Γ b Γ c− b

1

0

tb− 1 1− t c− b− 1 1− zt − adt, 0 < ℜ b < ℜ c , arg 1− z < π 1 20

Note 1.5 If c Z −
0 , then 2F1(a, b; c; z) has another integral representation in terms of the Mellin–Barnes contour integral,

which is given as (Kilbas et al. 2006; Podlubny 1999):

2F1 a, b; c; z =
1

2π i
Γ c

Γ a Γ b

γ + i∞

γ− i∞

Γ a− s Γ b− s
Γ c− s

− z − sΓ s ds, 1 21

where |arg(−z)| < π and the path of integration starts at the point γ − i∞ (γ R) and terminates at the point γ + i∞, separ-
ating all the poles s = − k (k ℵ0) to the left and all poles s = a+ n (n ℵ0) and s = b+m (m ℵ0) to the right.
Some properties of the Gauss hypergeometric function are given as (Kilbas et al. 2006):

i) 2F1(a, b; c; z) = 2F1(b, a; c; z),
ii) 2F1(a, b; c; 0) = 2F1(0, b; c; z),
iii) 2F1(a, b; b; z) = (1− z)−a,

iv) 2F1 a, b; c; 1 =
Γ c Γ c− a− b
Γ c− a Γ c− b

, ℜ c− a− b > 0,

v) (Euler transformation formula) 2F1(a, b; c; z) = (1− z)c− a− b
2F1(c− a, c− b; c; z),

vi)
d
dz

n

2F1 a, b; c; z =
a n b n

c n
2F1 a + n, b + n; c + n; z , n ℵ,

vii)
d
dz

n

za + n− 1
2F1 a, b; c; z = a nz

a− 1
2F1 a + n, b; c; z , n ℵ

Definition 1.13 (The Kummer Hypergeometric Function)
The Kummer hypergeometric function is defined as (Kilbas et al. 2006):

Φ a; c; z = 1F1 a; c; z =
∞

k = 0

a k

c k

zk

k
, 1 22

where z, a C and c C

∖

Z −
0 .

Note 1.5 The Euler integral representation of Kummer hypergeometric function is given as:

Φ a; c; z =
Γ c

Γ a Γ c− a

1

0

ta− 1 1− t c− a− 1e ztdt, 0 < ℜ a < ℜ c 1 23

Note 1.6 The function Φ(a; c; z) can be represented in terms of the Mellin–Barnes contour integral as follows:

Φ a; c; z =
1

2π i
Γ c
Γ a

γ + i∞

γ− i∞

Γ a− s
Γ c− s

− z − sΓ s ds, 1 24

where |arg(−z)| < π and the path of integration separates all the poles s= − k (k ℵ0) to the left and all poles s= a+ n (n
ℵ0) to the right.
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Definition 1.14 (The Generalized Hypergeometric Function)
The Gauss hypergeometric series Eq. (1.19) and the Kummer hypergeometric series Eq. (1.22) are extended to the general-
ized hypergeometric function, which is defined as (Kilbas et al. 2006):

pFq a1,…, ap; b1,…, bq; z =
∞

k = 0

a1 k… ap k

b1 k… bq k

zk

k
, 1 25

where ai, bj C and bj 0, − 1, − 2, …(i = 1, …, p; j = 1, …, q).

Note 1.7 If bj Z −
0 j = 1,…, q , then the generalized hypergeometric function has another integral representation in terms

of the Mellin–Barnes contour integral as presented in Eqs. (1.21) and (1.24), which is given as:

pFq a1,…, ap; b1,…, bq; z =
1

2π i

q

j = 1
Γ bj

p

i = 1
Γ ai

γ + i∞

γ− i∞

p

i = 1
Γ ai − s

q

j = 1
Γ bj − s

− z − sΓ s ds, 1 26

where |arg(−z)| < π and the path of integration separates all the poles s= − k (k ℵ0) to the left and all poles s= aj+ n (n
ℵ0; j = 1, 2, …, p) to the right.

Note 1.8 The property of a generalized hypergeometric function is given as (Kilbas et al. 2006):

d
dz

n

pFq a1,…, ap; b1,…, bq; z =
a1 n… ap n

b1 n… bq n
pFq a1 + n,…, ap + n; b1 + n,…, bq + n; z , n ℵ

1.3.8 The H-Function

In this section, we have presented the definitions and properties of H-function.

Definition 1.15 (The H-Function)
For integers m, n, p, q such that 0 ≤m≤ q and 0≤ n≤ p, for ai, bj C and for αi, βj R+(i = 1, 2, …, p, j = 1, 2, …, q), the
H-function is defined as (Fox 1962; Kilbas et al. 2006):

Hm,n
p,q z = Hm,n

p,q z

ai, αi 1,p

bj, βj
1,q

= Hm,n
p,q z

a1, α1 ,…, ap, αp

b1, β1 ,…, bq, βq

=
1
2πi

C

Hm,n
p,q s z− sds,

1 27

where

Hm,n
p,q =

m

j = 1
Γ bj + βjs

n

i = 1
Γ 1− ai − αis

r

i = n + 1
Γ ai + αis

m

j = m + 1
Γ 1− bj − βjs

1 28

Note 1.9 The relationship between the H-function and the generalized MLF may be described as (Mathai and Hau-
bold 2008):

Eγ
α,β z =

1
Γ γ

H1,1
1,2 − z

1− γ, 1

0, 1 , 1− β, α

There are various ways of defining fractional derivatives. As such, preliminaries of some definitions are incorporated in
the following section for the sake of completeness.
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1.4 Riemann–Liouville (R-L) Fractional Integral and Derivative

Different definitions have been developed by various researchers for the fractional (non-integer) order integral or derivative.
The Riemann–Liouville definition is one of the most well-known forms of fractional calculus. Riemann was the first to
introduce the Riemann–Liouville definition, derived from Abel’s integral.

Definition 1.16 A real function ψ(t), t> 0 is said to be in space Cγ, γ R if there exists a real number p (>γ), such that
ψ(t) = tpψ1(t), where ψ1(t) C[0, ∞], and it is said to be in the space Cm

γ if ψ (m) Cm, m ℵ.

Definition 1.17 (Riemann–Liouville Fractional Integral)
The Riemann–Liouville fractional integral operator Jαt of an order α of a function ψ Cγ, γ ≥ − 1 is defined as (Podlubny
1999; Samko et al. 2002):

Jαt ψ t =
1

Γ α

t

0

t− ξ α− 1ψ ξ dξ, t > 0 and α R + 1 29

Proof
Let us take the first integral of a function ψ(t) as

J1t ψ t =

t

0

ψ u du, t > 0 1 30

Integrating Eq. (1.30) once more, we have

J2t ψ t =

t

0

u

0

ψ v dvdu, t > 0 1 31

Successive integration of ψ(t) for n-times (n, integer) is

Jnt ψ t =

t

0

u

0

…
w

0

ψ v dvdw…du, t > 0 1 32

The closed-form formula of Eq. (1.32), which is given by Cauchy, is as follows (https://en.wikipedia.org/wiki/Cauchy_
formula_for_repeated_integration n.d.):

Jnt ψ t =
1

n− 1

t

0

t−u n− 1ψ u du, t > 0 1 33

By replacing n by α and factorial by gamma function, one may have the desired result Eq. (1.29).

Definition 1.18 (Riemann–Liouville Left-Hand Side and Right-Hand Side Integrals)
The left- and right-hand sides Riemann–Liouville fractional integral of a function ψ Cγ, γ ≥ − 1 are defined, respec-
tively, as (Chakraverty et al. 2020; Miller and Ross 1993; Podlubny 1999; Samko et al. 2002):

− ∞ Jαt ψ t =
1

Γ m− α

t

− ∞

t− ξ m− α− 1ψ ξ dξ, m− 1 < α < m,m ℵ, 1 34
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and

tJ
α
∞ψ t =

− 1 m

Γ m− α

∞

t

ξ− t m− α− 1ψ ξ dξ, m− 1 < α < m, m ℵ 1 35

Proof
Hints: Substituting m− α in place of α in Eq. (1.29) and taking integration over −∞ to t, we get left-hand side R-L integral.
Similarly, the right-hand side R-L integral is obtained using the same technique, but the (−1)m term arises due to a change of

order of integration i e
b

a
f x dx = −

a

b
f x dx . For this concept, one may see the detailed derivations of the aforemen-

tioned definitions in any standard fractional calculus book.
From Podlubny (1999), we have the following result:

Jt
αtn =

Γ n + 1
Γ n + α + 1

tn + α, n > − 1, α > − 1−n 1 36

Proof
We know that mth time integration of tn is defined as:

Jt
mtn =

Γ n + 1
Γ n + m + 1

tn + m, n > − 1 1 37

In place ofm− α, if we substitute α in Eq. (1.37), then we obtain α times integration of tn, which is defined as in Eq. (1.36).

Example 1.1 Suppose we want to calculate 1/2-times integration of ψ(t) = t, then we have

J0 5
t t =

Γ 1 + 1
1 + 0 5 + 1

t1 + 0 5 =
1

Γ 2 5
t1 5 =

3
4

πt1 5 1 38

Definition 1.19 (The Riemann–Liouville Fractional Derivative)
The fractional-order R-L derivative of order α is defined as (Kilbas et al. 2006; Podlubny 1999; Samko et al. 2002):

Dα
t ψ t =

1
Γ m− α

dm

dtm

t

0

t− ξ m− α− 1ψ ξ dξ, m− 1 < α < m,m ℵ,

dm

dtm
ψ t , α = m,m ℵ

1 39

Proof
Hints: we know that

dαψ t
dtα

= Dα
t ψ t = Dm

t D
α−m
t ψ t

Dα
t ψ t = Dm

t D
− m− α
t ψ t = Dm

t J
m− α
t ψ t

1 40

Now, using Eq. (1.29), Eq. (1.40) yields

Dα
t ψ t = Dm

t
1

Γ m− α

t

0

t− ξ m− α− 1ψ ξ dξ

Dα
t ψ t =

1
Γ m− α

dm

dtm

t

0

t− ξ m− α− 1ψ ξ dξ

1 41
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Definition 1.20 (Riemann–Liouville Left-Hand and Right-Hand Sides Derivatives)
The left-hand and right-hand sides R-L fractional derivative of order α can be defined, respectively, as follows (Podlubny
1999; Samko et al. 2002):

− ∞Dα
t ψ t =

1
Γ m− α

dm

dtm

t

− ∞

t− ξ m− α− 1ψ ξ dξ, m− 1 < α < m,m ℵ, 1 42

and

tD
α
∞ψ t =

− 1 m

Γ m− α

dm

dtm

∞

t

ξ− t m− α− 1ψ ξ dξ, m− 1 < α < m,m ℵ 1 43

Proof
The proof is very similar to the proof of Definition 1.18. The only difference is that in Definition 1.18, the integral operator
was there, but the differential operator is present here.

Note 1.10 It may be noted that the derivative of a constant (c) is not zero in the Riemann–Liouville sense, and mathe-
matically it is written as:

Dα
t c =

ct− α

Γ 1− α
, 0 < α < 1 1 44

Proof
If 0 < α< 1 and ψ(t) = c then Eq. (1.39) reduces to

Dα
t c =

1
Γ 1− α

d
dt

t

0

t− ξ 1− α− 1c dξ 1 45

Here, we have taken m = 1 since from Eq. (1.39)m− 1 < α<m. If we comparem− 1 < α<m with 0 < α< 1, then we
obtain m = 1. Accordingly, we may get Eq. (1.45). Now, simplifying Eq. (1.45), we have

Dα
t c =

c
Γ 1− α

d
dt

t

0

t− ξ − αdξ =
c

Γ 1− α

d
dt

− t− ξ − α + 1

− α + 1

t

0

=
c

Γ 1− α

d
dt

t− α + 1

− α + 1

Dα
t c =

c
Γ 1− α

− α + 1
t− α

− α + 1
=

c t− α

Γ 1− α

1.5 Caputo Fractional Derivative

The derivative of a constant is not zero in the Riemann–Liouville sense. As a result, the Riemann–Liouville derivative has
fewer physical representations. Hence, the Caputo fractional derivative has been utilized in certain circumstances.

Definition 1.21 (Caputo Fractional Derivative)
The fractional-order Caputo derivative of an order α of a function ψ(t) is defined as (Podlubny 1999; Samko et al. 2002):

Dα
t ψ t = Dα−m

t Dm
t ψ t = Jm− α

t Dm
t ψ t

=

1
Γ m− α

t

0

t− ξ m− α− 1 d
mψ ξ

dξm
dξ, m− 1 < α < m,m ℵ,

dm

dtm
ψ t , α = m,m ℵ

1 46
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Proof
Hints: The proof is similar to the proof of Definition 1.19, but the only difference is that in R-L fractional derivative, integer-
order derivative lies outside the integration, but in the Caputo sense, integer-order derivative lies inside the integration.

Note 1.11 First, Lacroix introduced the integer-order derivatives of a function which is as follows:

Dn
t t

m =
m

m−n
tm− n =

Γ m + 1
Γ m− n + 1

tm− n, for n ≤ m 1 47

Later, he extended this integer-order derivative to fractional-order derivative in the Caputo sense as:

Dα
t t

β =
Γ β + 1

Γ β− α + 1
tβ− α, for β > α− 1, β > − 1 1 48

Also, the derivative of a constant in the Caputo sense is zero. Mathematically,

Dα
t c = 0

Hints
In the Caputo derivative, integer-order derivative lies inside the integration, which yields the derivative of a constant as zero
that is,

Dα
t c =

1
Γ m− α

t

0

t− ξ m− α− 1 d
mc

dξm
dξ =

1
Γ m− α

t

0

t− ξ m− α− 10 dξ = 0

Example 1.2

d0 5t

dt0 5 =
Γ 1 + 1

Γ 1− 0 5 + 1
t1− 0 5 =

1

Γ
3
2

t0 5 =
2
π
t1 2

Note 1.12 (i) The main advantages of Caputo fractional derivative are that the initial conditions for the fractional differ-
ential equations are the same form as that of ordinary differential equations. Another advantage is that the Caputo fractional
derivative of a constant is zero, while the R-L fractional derivative of a constant is not zero.
(ii) Several properties in classical derivatives and integrations accept constant roles. However, these properties may not

always hold in the fractional sense. For example, (a)Dα
t = Dα−m

t Dm
t = Jm− α

t Dm
t and (b) Dα

t = Dm
t D

α−m
t = Dm

t J
m− α
t form− 1

< α<m both look equal, but mathematically it is different.
Suppose

D7 5
t t = D 7 5 − 2

t D2
t t = J2− 7 5

t D2
t t = J3 5

t D2
t t = J3 5

t 0 = 0, using a 1 49

but

D7 5
t t = D2

t D
7 5 − 2
t t = D2

t J
2− 7 5
t t = D2

t J
3 5
t t, using b

that is,

D7 5
t t = D2

t J
3 5
t t 1 50

Using Eq. (1.36), Eq. (1.50) reduces to

D7 5
t t = D2

t
Γ 1 + 1

Γ 1 + 3 5 + 1
t8 5 =

1
Γ 13 5

D2
t t

8 5 =
24 25
Γ 13 5

t− 2 5 1 51

On simplifying Eq. (1.51), we obtain

D7 5
t t =

1
Γ 3 5

t− 2 5 0

So, Jm− α
t Dm

t is not always equal to Dm
t J

m− α
t in a fractional sense.

In the aforementioned Note 1.12 (ii), m− 1 = 1 < 7
5 < 2 = m , that is, m = 2.
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In the following section, we incorporate a theoremwith respect to the interchange of derivatives and integration behavior.

Theorem 1.1 Kilbas et al. (2006); Podlubny (1999); Samko et al. (2002)

i) aD
α
t aJ

β
t ψ t = aD

α− β
t ψ t

ii) aJ
α
t aD

β
t ψ t = aJ

α− β
t ψ t −

m

k = 1

t− a α− k

Γ α + 1− k aD
β− k
t ψ t t = a

Here m = β + 1, where β represents the Ceiling function which means the least integer greater than or equal to β.

Proof
(i) Hints:

aD
α
t aJ

β
t ψ t =

dn

dtn aJ
n− α
t aJ

β
t ψ t =

dn

dtn aJ
n− α− β
t = aD

α− β
t ψ t

(ii) Hints:

I = aJ
α
t aD

β
t ψ t =

1
Γ α

t

a

t− ξ α− 1
aD

β
t ψ ξ dξ

I =
1

Γ α + 1

t

a

d
dt

t− ξ α
aD

β
t ψ ξ dξ

Applying integration by parts, we have

I = −
t− a α

Γ α + 1 aD
β
t ψ ξ

t = a
+

1
Γ α + 2

t

a

d
dt

t− ξ α + 1
aD

β− 1
t ψ ξ dξ

Again, successively applying integration by part, we may get the desired result.

1.6 Grünwald–Letnikov Fractional Derivative and Integral

Anton Karl Grünwald (1838–1920) and Aleksey Vasilievich Letnikov (1837–1888) proposed the Grünwald–Letnikov frac-
tional derivative in 1867 and 1868, respectively. Finite differences are used to define the Grünwald–Letnikov fractional
derivative, which is equivalent to the Riemann–Liouville definition.

Definition 1.22 (Grünwald–Letnikov Fractional Derivative)
The differential operator Dα

t of order α in the Grünwald–Letnikov sense is defined as (Podlubny 1999; Samko et al. 2002):

aD
α
t ψ t = lim

h 0

1
hα

t− a h

r = 0

− 1 r Γ α + 1
r Γ α− r + 1

ψ t− rh 1 52

Proof
Let ψ(x) [a, b]. Then the first-order derivative of the function ψ(x) is defined as:

ψ 1 t =
dψ
dt

= lim
h 0

ψ t −ψ t− h
h

Again applying a derivative operator on the aforementioned equation, we obtain

ψ2 t =
d2ψ

dt2
= lim

h 0

ψ t − 2ψ t− h + ψ t− 2h

h2

12 1 Introduction to Fractional Calculus



With the help of the method of induction, we may write nth-order derivative as:

ψn t =
dnψ
dtn

= lim
h 0

1
hn

n

r = 0

− 1 r n

r
ψ t− rh 1 53

where a ≤ t ≤ b, h =
t− a
n

, and
n

r
=

n n− 1 n− 2 n− r + 1
r

.

Now, we extend the nth-order derivative to fractional-order derivate as follows:

ψα t =
dαψ
dtα

= lim
h 0

1
hα

α

r = 0

− 1 r α

r
ψ t− rh , 1 54

where
α

r
=

α

r α− r
=

Γ 1 + α

r Γ α− r + 1
and h =

t− a
n

n =
t− a
h

. Since n is replaced by α and α is a non-integer. So, we

can write α =
t− a
h

.

Definition 1.23 (Grünwald–Letnikov Fractional Integral)
The fractional Grünwald–Letnikov integral operator is defined as (Podlubny 1999; Samko et al. 2002):

aD
− α
t ψ t = lim

h 0
hα

t− a h

r = 0

Γ α + r
r Γ α

ψ t− rh 1 55

Proof
Hints: Replacing α by −α of the Eq. (1.52), we get

aD
− α
t ψ t = lim

h 0
hα

t− a h

r = 0

− 1 r Γ − α + 1
r Γ − α− r + 1

ψ t− rh 1 56

We know that

Γ −α+1
r Γ −α−r+1

=
−α

r

=
−α −α−1 −α−2 … −α−r+1

r

=
−1 rα α+1 α+2 … α+ r−1 α−1

r α−1

=
−1 rΓ α+ r

r Γ α

1 57

Substituting Eq. (1.57) into Eq. (1.56), we get Eq. (1.55).

1.7 Riesz Fractional Derivative and Integral

In this section, the definition of Riesz fractional integral and derivative has been presented.

Definition 1.24 (Riesz Fractional Integral)
The Riesz fractional integral of a function ψ(t) Cγ, (γ ≥ 1) of order α is defined as (Herrmann 2011; Podlubny 1999; Samko
et al. 2002):

R
0 J

α
t ψ t = cα − ∞ Jαt + tJ

α
∞ ψ t =

cα
Γ α

∞

− ∞

t− ξ α− 1ψ ξ dξ, 1 58

where cα = 1
2 cos απ 2 , α 1 and m− 1 < α≤m,

where − ∞ Jαt and tJ
α
∞ are the left-hand and right-hand sides, respectively, of Riemann–Liouville fractional integral operators

defined in Definition 1.18.
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Definition 1.25 (Riesz Fractional Derivative)
The Riesz fractional differentiation of a function ψ(t) Cγ, (γ ≥ 1) of order α on the infinite domain −∞ < t<∞ is defined
as (Herrmann 2011; Podlubny 1999; Samko et al. 2002):

dαψ t
d t α = − cα − ∞Dα

t + tD
α
∞ ψ t , 1 59

where cα =
1

2 cos απ 2
, α 1 and m− 1 < α≤m,where − ∞Dα

t and tD
α
∞ are the left-hand and right-hand sides, respec-

tively, Riemann–Liouville differential operator defined in Definition 1.20.
In case of a≤ t ≤ b (i.e. t is defined in the finite interval), the Riesz fractional derivative of order α may be written as

(Herrmann 2011; Podlubny 1999; Samko et al. 2002):

dαψ t
d t α = −

1
2 cos απ 2 aD

α
t + tD

α
b ψ t , m− 1 < α ≤ m and α 1, 1 60

where

aD
α
t ψ t =

1
Γ m− α

dm

dtm

t

a

t− ξ m− α− 1ψ ξ dξ,

tD
α
bψ t =

− 1 n

Γ m− α

dm

dtm

b

t

t− ξ m− α− 1ψ ξ dξ

Note 1.13 Let α> 0 and β > 0 be such that m− 1 < α, β ≤m, and α+ β ≤m, then we have the following index rule:

R
0D

α
t

R
0D

β
t ψ t = R

0D
α + β
t ψ t

Note 1.14 The Riesz fractional operator R
0D

α− 1
t ψ t of the order 0 < α< 1 can be expressed as Riesz fractional integral

operator R
0 J

1− α
t ψ t by the following identity (Herrmann 2011; Podlubny 1999; Samko et al. 2002):

R
0D

α− 1
t ψ t = R

0 J
1− α
t ψ t , t T

1.8 Modified Riemann–Liouville Derivative

This section presents another form of fractional derivative, namely the modified Riemann–Liouville derivative (Jumarie
2005, 2006) of order α, defined by the formula:

ψ α t = lim
h 0

∞

k = 0
− 1 k α

k
ψ t + α− k h

hα
, α R, 0 < α ≤ 1 1 61

Equation (1.61) can be written as:

Dα
t ψ t =

1
Γ 1− α

d
dt

t

0

t− ξ − α ψ ξ −ψ 0 dξ, if 0 < α ≤ 1,

ψ α−m t
m
, if m ≤ α ≤ m + 1,m ≥ 1

1 62
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1.9 Local Fractional Derivative

In this section, the theory and definitions of local fractional derivatives have been discussed.

1.9.1 Local Fractional Continuity of a Function

Definition 1.26 Let ψ(x) is defined throughout some interval containing x0 and all points near x0, then ψ(x) is said to
be local fractional continuous at x = x0, denoted by lim

x x0
ψ x = ψ x0 , if to each positive ε and some positive constant k cor-

responds some positive δ such that (Yang 2012a, 2012b)

ψ x −ψ x0 < kεα, 0 < α ≤ 1, 1 63

whenever |x− x0| < δ, ε, δ> 0 and ε, δ R. The function ψ(x) is said to be local fractional continuous on the interval (a, b),
represented by:

ψ x Cα a, b , 1 64

where α is the fractal dimension with 0 < α≤ 1.

Definition 1.27 A function ψ(x) : R R, X↦ ψ(X) is called a non-differentiable function of exponent α, 0 < α ≤ 1, which
satisfies the Hölder function of exponent α, then for x, y X, we have (Yang 2012a, 2012b)

ψ x −ψ y < C x− y α 1 65

Definition 1.28 A function ψ(x) : R R, X↦ ψ(X) is said to be local fractional continuous of order α, 0 < α≤ 1, if we have
(Yang 2012a, 2012b)

ψ x −ψ x0 < O x− x0
α 1 66

Note 1.15 A function ψ(x) is said to be in the space Cα(a, b) if and only if |ψ(x)− ψ(x0)| <O ((x− x0)
α), with any x0 [a, b]

and 0 < α≤ 1.

Theorem 1.2 (Generalized Hadamard’s Theorem)(Jumarie 2009)
A function ψ(x) Cα(I) in a neighborhood of a point x0 can be decomposed in the form:

ψ x = ψ x0 +
x− x0

α

Γ 1 + α
r x ,

where r(x) Cmα(I) (where m times αth differentiable on I R).

1.9.2 Local Fractional Derivative

At x = x0, if a function is not differentiable but has a fractional derivative of order α, then it is locally equivalent to the
function:

ψ x = ψ x0 +
x− x0

α

Γ 1 + α
ψ α x0 + O x− x0

2α 1 67

Definition 1.29 Given the aforementioned Eq. (1.67), the local fractional derivative of ψ(x) Cα[a, b] of order α at x= x0 is
defined as (Yang 2012a, 2012b):

ψ α x0 =
dαψ x
dxα x = x0

= lim
x x0

Δα ψ x −ψ x0
x− x0

α , 1 68

where Δα(ψ(x)− ψ(x0)) Γ(1 + α) (ψ(x)− ψ(x0)) and 0 < α≤ 1.
Kolwankar and Gangal (1996) presented a different concept of local fractional derivative based on Cantor space theory,

which is as follows.
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Definition 1.30 The local fractional derivative of an order α (0 < α< 1) of a functionψ C0 : R R is defined as:

Dαψ x = lim
ξ x

Dα
x ψ ξ −ψ x , 1 69

if the limit exists in R ∞.
If ψ(x) is differentiable at the point other than x= x0 with the nonzero value of the derivative, then it can be approximated

locally as:

ψ x = ψ x0 + ψ x0 x− x0 + O x− x0 1 70

So, the local fractional derivative of ψ(x) at x = x0 becomes

Dαψ x0 = lim
x x0

dα ψ x −ψ x0
d x−x0

α

=ψ x0 lim
x x0

dα x−x0
d x−x0

α

1 71

Note 1.16 Some properties of the local fractional derivative are given as follows (Hu et al., 2013):

i)
dαxkα

dxα
=

Γ 1 + kα
Γ 1 + k− 1 α

x k− 1 α,

ii)
dαEα kxα

dxα
= kEα kxα , k is a constant

Note 1.17 (Hu et al. 2013)

(i) If y(x) = ( f ∘ u)(x) where u(x) = g(x), then we have

dαy x
dxα

= f α g x g 1 x
α
, 1 72

when f (α)(g(x)) and g(1)(x) exist.
(ii) If y(x) = ( f ∘ u)(x) where u(x) = g(x), then we have

dαy x
dxα

= f 1 g x g α x , 1 73

when f (1)(g(x)) and g(α)(x) exist.
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2

Recent Trends in Fractional Dynamical Models and Mathematical Methods

2.1 Introduction

Mathematicians like Leibniz, L’Hôpital, Abel, Liouville, Riemann, and others conceptualized fractional calculus as the theory
of integrals and derivatives of arbitrary real (and complex) order. Nonlocality, an intrinsic property of many complex systems,
makes fractional derivatives suitable for modeling phenomena in various sciences and engineering disciplines. Fractional
derivatives deal with the global evolution of the system rather than just focusing on the local dynamics. Therefore, fractional
derivativesprovidebetter representationsof real-worldbehavior thanordinaryderivatives.Although fractional calculus is three
centuries old, now it is very popular with scientists and engineers. The beauty of this subject is that fractional derivatives
(and integrals) are not a local (or point) property. This subject, therefore, considers the history and nonlocal distribution effects.

2.2 Fractional Calculus: A Generalization of Integer-Order Calculus

Consider an integer n, and when we say xnwe immediately visualize multiplying x by itself n times to give the result. We still
obtain the result if n is not an integer, but it will not be easy to visualize how. Further, 2e and 2π are hard to visualize, but they

exists. Similarly, although the fractional derivative
dπ

dtπ
f t is hard to visualize, it exists. As real numbers exist between the

integers, fractional derivatives and integrals exist between conventional integer-order derivatives and n-fold integrations.
It is relatively easy to understand how integer-order derivatives are interpreted. In general, a first-order derivative measures
the rate of change of a function or the slope of a tangent line at a particular point. Because fractional derivatives are inher-
ently nonlocal, there is no clear geometric interpretation of fractional differentiation. As a result, the fractional derivatives of
a function cannot be calculated simply from its behavior around a specific point. Indeed, the behavior of a function far away
from the evaluation point can significantly impact the value of a fractional derivative. Because of this, providing a straight-
forward, understandable explanation of the geometrical meaning of fractional derivatives is challenging. In Shukla and
Sapra (2019), Podlubny has shown that the geometric meaning of fractional integration is “Shadows on the walls,” while
the physical interpretation is “Shadows of the past.”
In order to illustrate the usefulness of the fractional derivatives, let us take an example from reference (Diethelm 2010). It

is well known that the relationship between stress σ(t) and strain ε(t) in material under the influence of external forces is

σ t = η
d
dt

ε t 2 1

Equation (2.1) is called Newton’s law for a viscous liquid, with η representing the viscosity of the material, and

σ t = Eε t , 2 2

is Hooke’s law for an elastic solid, with E denoting the modulus of elasticity. We can rewrite Eqs. (2.1) and (2.2) as:

σ t = υ
dα

dtα
ε t , 2 3

withα=0 for elastic solids andα=1 for a viscous liquid.However, in the actual sense, viscoelasticmaterials have a behavior

midway between an elastic solid and a viscous liquid. Therefore, it may be advantageous to give sense to the operator
dα

dtα

if 0 < α< 1. There are various ways of defining fractional derivatives and integrals. Various fractional derivatives, integrals,
and useful functions associated with fractional calculus have been presented in Chapter 1.
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Fractional calculus has numerous applications in engineering and science, including electromagnetics, viscoelasticity,
fluid mechanics, electrochemistry, biological population models, optics, and signal processing. Fractional differential equa-
tions have been found to be the better description of physical and engineering phenomena. Fractional derivatives are used to
precisely model damping in systems. The following section covers some contemporary applications of fractional calculus
and models of fractional dynamical systems.

2.3 Fractional Derivatives of Some Functions and Their Graphical Illustrations

In this section, we present explicit formulas to calculate fractional derivatives and integralsof some special functions and
then depict their graphs.

a) Unit function (Dalir and Bashour 2010) If f (x) = 1 then
dα1
dxα

=
x − α

Γ 1− α
, for all α in Riemann–Liouville sense. Solution

plot at different values of α is given in Figure 2.1.

b) Identity function (Dalir and Bashour 2010) If f (x) = x then
dαx
dxα

=
x1− α

Γ 2− α
. Solution plot at different values of α is

depicted in Figure 2.2.
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Figure 2.1 Solution plot of unit function.
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Figure 2.2 Solution plot of the identity function.
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c) Exponential function (Dalir and Bashour 2010) Fractional derivative and integral of the function f (x) = ex is

dαex

dxα
=

∞

k

xk− α

Γ k− α + 1
. The solution plot at various values of α is illustrated in Figure 2.3.

d) Sine function (Dalir and Bashour 2010) Fractional derivative and integral of the sine function f (x) = sin(x) is written as
dα sin x

dxα
= sin x +

απ

2
. The solution at various values of α is plotted in Figure 2.4.

e) Cosine function (Dalir and Bashour 2010) Fractional derivative and integral of the cosine function f (x) = cos(x) is

written as
dα cos x

dxα
= cos x +

απ

2
. The solution is given in Figure 2.5 at various values of α.
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Figure 2.3 Solution plot of the exponential function.
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Figure 2.4 Solution plot of the sine function.
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2.4 Applications of Fractional Calculus

Although the fundamental mathematical ideas of fractional calculus (noninteger-order integral and differential operations)
were developed long ago by mathematicians, such as Leibniz (1695), Liouville (1834), Riemann (1892), and others, and
brought to the attention of the engineering world by Oliver Heaviside in the 1890s. The first book on this subject was
not published until 1974 by Oldham and Spanier (1974). The use of fractional calculus in physics, continuum mechanics,
signal processing, and electromagnetics has been highlighted in recent monographs and symposium proceedings. Some of
the applications are listed in the following sections.

2.4.1 N.H. Abel and Tautochronous problem

Probably, the first application of fractional calculus was made by Abel (1823) during the year 1802–1829. He obtained the
solution to an integral equation arising from the tautochronous problem or isochronic curve formulation. The purpose of
this problem is to determine the geometry of a frictionless plane curve through the origin in a vertical plane along which a
particle of massm can descend in an independent time from its starting position. There are two ways of obtaining the solu-
tion: the first is using the standard approach and the second is through fractional calculus. N.H. Able proposed the solution
based on the energy conservation principle, which states that the total amount of energy in an isolated system remains
constant or, in other words, the sum between gravitational potential and kinetic energy remains constant. In this problem,
he has considered no friction between particles. Therefore, the kinetic energy of the particle equals the difference between
the potential energy and the initial point of the particle and the potential at the point where the particle is located.
If T is a constant for the sliding time, then the Abel integral equation (1823) is written as (Dalir and Bashour 2010):

2gT =

η

0

η− y − 1 2f y dy, 2 4

where g is the acceleration due to gravity, (ξ, η) is the initial position, and s = f (y) is the equation of the sliding curve.
Equation (2.4) can be rewritten in fractional integral form as (Dalir and Bashour 2010):

T 2g = Γ
1
2 0D

− 1 2
η f y 2 5

2.4.2 Ultrasonic Wave Propagation in Human Cancellous Bone

In Sebaa et al. (2006), the viscous interactions between fluid and solid structures are described using fractional calculus.
Blot’s theory is used to calculate the reflection and transmission scattering operators for a slab of cancellous bone in an
elastic frame. Experimental findings are compared to theoretical results for slow and fast waves transmitted through human
cancellous bone samples.
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Figure 2.5 Solution plot of the cosine function.
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2.4.3 Modeling of Speech Signals Using Fractional Calculus

This work (Assaleh and Ahmad 2007) presents a unique technique for speech signal modeling based on fractional calculus.
The method used in Assaleh and Ahmad (2007) contrasts the well-known linear predictive coding (LPC) method based on
integer-order models. Numerical simulations show that the speech signal may be appropriately described by utilizing a few
integrals of fractional orders as basis functions.

2.4.4 Modeling the Cardiac Tissue Electrode Interface Using Fractional Calculus

In Magin (2008), all kinds of biopotential recording (e.g. electrocardiogram (ECG), electromyography (EMG), and electro-
encephalogram (EEG)) and functional electrical stimulation use the same tissue electrode interface (e.g. pacemaker, coch-
lear implant, and deep brain stimulation). The order of differentiationmay be generalized by changing the defining current–
voltage relationships in conventional lumped element circuit models of electrodes. Although fractional-order models
enhance the explanation of known bioelectrode behavior, current experimental investigations of cardiac tissue show that
different mathematical tools may be required to understand this complicated system fully.

2.4.5 Application of Fractional Calculus to the Sound Waves Propagation in Rigid Porous Materials

In Fellah and Depollier (2002), as the asymptotic expressions of stiffness and damping in porous materials are proportional
to fractional powers of frequency, time derivatives of fractional order may be used to characterize the behavior of sound
waves in these materials, including relaxation and frequency dependence.

2.4.6 Fractional Calculus for Lateral and Longitudinal Control of Autonomous Vehicles

In Súarez et al. (2004), the path-tracking problem of an autonomous electric vehicle is addressed here using fractional-order
controllers (FOCs). To implement conventional controller and FOCs, the lateral dynamics of an industrial vehicle have been
considered. Simulations and comparisons of several control schemes using these controllers have been made.

2.4.7 Application of Fractional Calculus in the Theory of Viscoelasticity

In Soczkiewicz (2002), using fractional derivatives in the viscoelasticity theory makes it possible to obtain constitutive equa-
tions for the complex elastic modulus of viscoelastic materials with only a few experimentally determined parameters. The
fractional derivative has also been applied to studying complex moduli and impedances for various viscoelastic models.

2.4.8 Fractional Differentiation for Edge Detection

Generally, in image processing, integer-order differentiation operators are frequently utilized in edge identification, mainly
order 1 for the gradient and order 2 for the Laplacian. The authors of Mathieu et al. (2003) demonstrated that noninteger
(fractional) differentiation can be used to improve the criteria of thin detection or detection selectivity when dealing with
parabolic luminance transitions, as well as the criterion of immunity to noise which can be interpreted in terms of robust-
ness to noise in general.

2.4.9 Wave Propagation in Viscoelastic Horns Using a Fractional Calculus Rheology Model

In Timothy (2003), in order to describe the complex mechanical behavior of materials, fluid and solid models are used with
fractional calculus. For molecular solutions, fractional derivatives have been demonstrated to represent the viscoelastic
stress derived from polymer chain theory. This study investigates infinitesimal waves propagating along with one-
dimensional horns with a small cross-sectional area change. This study examines explicitly linear, conical, exponential,
and catenoidal shapes. The simulations use mathematical calculations and fractional rheology from Bagley data to analyze
and predict the wave amplitudes versus frequency. It is possible to analyze design trade-offs of materials with real materials
while employing fractional calculus representations to derive classic elastic and fluid “Webster equations”within the appro-
priate limits for engineering and scientific application.
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2.4.10 Application of Fractional Calculus to Fluid Mechanics

In Kulish and Lage (2002), the authors have applied fractional calculus to obtain the solution to time-dependent, viscous–
diffusion fluid mechanics problems. By combining fractional calculus and the Laplace transform method for the transient
viscous – diffusion equation in a semi-infinite space, explicit analytical (fractional) solutions for the shear stress and fluid
speed are obtained in the domain. Comparing the fractional results for boundary stress and fluid speed with the existing
analytical solutions to the first and second Stokes problems shows that the fractional methodology is more straightforward
and more powerful than the existing techniques.

2.4.11 Radioactivity, Exponential Decay, and Population Growth

The decomposition of radioactive substances is proportional to their quantity. Population growth follows a similar pattern.
These models can be summarized by an ordinary differential equation of first order. The solution is exponential with a
positive and negative argument for both models. In a radioactive model for decay, the proportionality constant depends
on the material, while in a population growth model, it depends on the initial population. The signal of the proportionality
constant makes the difference between these two models. To provide a more accurate description, the fractional models are
considered, since the solution depends on the order of the fractional derivative. Let us consider the fractional differential
equation as follows (Shukla and Sapra 2019):

dαm t
dtα

= − k m t , 0 < α ≤ 1, 2 6

where k is the proportionality constant andm(t) is the dependent variable which denotes the mass of the radioactive mate-
rial and the population.With the help of the Laplace transformmethod, one can obtain the solution to the model mentioned
earlier.

2.4.12 The Harmonic Oscillator

The equation of motion of the classical harmonic oscillator can be written as (Shukla and Sapra 2019):

m
d2x t

dt2
= − kx t , 2 7

where a particle of massm constrained to move along the x-axis and bound to the equilibrium position x = 0 by a restoring
force −kx. Using suitable initial condition, the solution of Eq. (2.7) will be harmonic oscillation as (Shukla and Sapra 2019):

x t = x0 cos
k
m
t 2 8

Fractional derivative models are used to represent systems that need damping modeling accurately. Since all the natural
systems have frictions, the solution provided by the damped harmonic oscillator is more accurate. The equation of simple
harmonic oscillator in Caputo fractional sense may be written as (Shukla and Sapra 2019):

dαx t
dtα

+ ωαx t = 0, 1 < α ≤ 2 2 9

Using the initial conditions x(0) = x0 and x (0) = 0, we find the solution of Eq. (2.9) as follows (Shukla and Sapra 2019):

x t = x0Eα −ωαtα 2 10

At α = 2, Eq. (2.10) is written as

x t = x0E2 −ω2t2 = x0 cos ωt 2 11

This is the solution of an integer-order harmonic oscillator.
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2.5 Overview of Some Analytical/Numerical Methods

Numerous physical and engineering problems are modeled by differential equations. In order to observe the qualitative
characteristics and physical interpretation of a large number of fractional phenomena, the solutions of those models are
required. It is sometimes challenging to obtain the solution (both analytical and numerical) of nonlinear partial differential
equations of fractional order due to their nonlinear behavior. So for the last few decades, a great deal of attention has been
directed toward the solution to these kinds of problems. Researchers throughout the globe are trying to develop various
efficient methods to handle these problems. Although a few methods have been developed by other researchers to analyze
the aforementioned problems, those are problem-dependent and sometimes are not efficient. So, the development of effi-
cient computational methods for these problems is the recent challenge.
In the following section, the authors have presented some of the numerical and analytical methods used for obtaining the

solution of fractional differential equations:

2.5.1 Fractional Adams–Bashforth/Moulton Methods

Diethelm et al. (2002, 2004) developed and studied an Adams–Bashforth type approach in their works. On the other hand,
this methodology uses a two-step predictor–corrector method, which is notably different from the traditional method. Sev-
eral authors have recently employed this approach to solve fractional differential equations. Zayernouri and Matzavinos
(2016) developed an implicit–explicit (IMEX) splitting technique for linear and nonlinear fractional partial differential
equations using the modified Adams–Bashforth and Adams–Moulton methods. They also investigated the Keller–Segel
fractional chemotaxis system. Owolabi and Atangana (2017) suggested a new three-step fractional Adams–Bashforth
approach using the Caputo–Fabrizio derivative for solving linear and nonlinear fractional differential equations. Owolabi
et al. (2021) analyzed three nonlinear chaotic dynamical systems using a fractional version of the Adams–Bashforth
approach described in the Liouville–Caputo derivative sense.

2.5.2 Fractional Euler Method

This approach is straightforward and provides solutions without linearization, perturbations, or other assumptions. The
main characteristic of the approach is that the Euler method has an intuitive geometric meaning. Yu and Zhen (2020)
adapted the implicit Euler method for nonlinear impulsive fractional differential equations. They also verified the conver-
gence analysis of the method and concluded that the method is convergent of the first order. Improved Euler method and
other relevant studies can be found in Odibat and Momani (2008) and Tong et al. (2013).

2.5.3 Finite Difference Method

Finite differencemethods (FDMs) are well-known numerical methods to solve differential equations by approximating deri-
vatives using different schemes (Hoffman and Frankel 2001; Bhat and Chakraverty 2004). The finite difference approxima-
tions are the simplest and oldest methods to solve differential equations. Vargas (2022) used the generalized finite difference
approach to construct a straightforward discretization of space fractional derivatives. For fractional advection–dispersion
equations with fractional derivative boundary conditions, Liu and Hou (2017) established an implicit finite difference
approach. The approach has been shown to have first-order consistency, solvability, unconditional stability, and first-order
convergence. Anley and Zheng (2020) proposed finite difference approximation for space fractional convection–diffusion
model having space variable coefficients on the given bounded domain over time and space.

2.5.4 Finite Element Method

The finite element method (FEM) has wide applications in various science and engineering fields, viz. structural mechanics,
biomechanics, and electromagnetic field problems, of which exact solutions may not be determined. The FEM serves as a
numerical discretization approach that converts differential equations into algebraic equations. With the help of the space–
time FEM, Lai et al. (2021) obtained the numerical solutions for linear Riesz space fractional partial differential equations
with a second-order time derivative. Zheng et al. (2010) applied the FEM for the space fractional advection–diffusion equa-
tion with the nonhomogeneous initial–boundary condition defined in Caputo fractional derivative sense. Ford et al. (2011)
consider the FEM for time fractional partial differential equations. The Lax–Milgram Lemma is also used to demonstrate the
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existence and uniqueness of the solutions. Recently, Li et al. (2021) combined the standard Galerkin FEM in the spatial
direction, the fractional Crank–Nicolson method, and extrapolation methods in the temporal direction to handle the non-
linear time fractional parabolic problems with time delay.

2.5.5 Finite Volume Method

Another popular numerical methodology is the finite volume method (FVM) (Hejazi et al. 2013; Liu et al. 2014; Wang et al.
2015; Zhang et al. 2021). The fundamental conservation property of FVMmakes it the preferred approach compared to other
existing methods such as the FDM, and FEM. In this methodology, volumes (elements or cells) are evaluated at discrete
points over a meshed geometry, similar to well-known numerical approaches such as FDM or FEM. Then, using the
well-known divergence theorem (Godlewski and Raviart 2013), the associated volume integrals of the corresponding dif-
ferential equation, including the divergence component, are transformed to surface integrals. In the last phase, the simu-
lated differential equation is then converted over discrete volumes into a discrete system of algebraic equations. The system
of algebraic equations is solved using conventional methods to find the dependent variables.
The aforementioned FVM provides many significant advantages when dealing with differential equations in science and

engineering problems. A key feature of the FVM is the construction of physical space (domain of the differential equation)
on unregulated polygonal meshes. Another advantage of the FVM is that it is effortless to apply multiple boundary con-
ditions in a noninvasive manner. Because the unknown variables involved are computed at the centroids of the volume
components rather than at their boundary faces (Liu 2018). These properties of the FVM have made it appropriate for
numerical simulations in a wide range of applications.

2.5.6 Meshless Method

The meshless methods (Gu et al. 2011; Dehghan et al. 2015; Yang et al. 2015; Abbaszadeh and Dehghan 2017; Maalek et al.
2019) in the numerical analysis do not need the connection of nodes in the simulation domain; instead, they rely on the
interaction of each node with all of its neighbors. As a result, initial comprehensive attributes like mass and kinetic energy
are given to single nodes rather than mesh components. Numerical approaches, including the FDM, FVM, and FEM, were
developed using data point meshes. Each point has a given number of predetermined neighbors, and this connectionmay be
utilized to build mathematical operators such as the derivative. These operators are then used to create the simulation equa-
tions. However, in simulations where the material being simulated may move around (as in computational fluid dynamics)
or when substantial material deformations can occur (as in plastic material simulations), maintaining mesh connectivity
without adding error into the simulation may be problematic. The operators specified on the mesh may no longer yield
proper values if tangled or degenerated during simulation. During simulation, the mesh can be regenerated (a process
known as remeshing), but this might introduce errors since all previous data points must be mapped onto a new and dif-
ferent set of data points.

2.5.7 Reproducing Kernel Hilbert Space Method

The reproducing kernel Hilbert space (RKHS) technique has been widely utilized to regulate the solvability findings of
numerousmodels, includingdifferent formsof differential–integral operators.Although theRKHSalgorithm is still relatively
new, it has several advantages. First, it has the ability to solve many fractional differential models with complex constraint
conditions, which are challenging to solve. Second, the numerical solutions and their derivatives converge uniformly to the
exact solutions and derivatives, respectively. And third, the algorithm is mesh-free, requires no time discretization, and is
simple to implement. Many authors have applied this technique for handling a variety of complex phenomena. Djennadi
et al. (2021) employed thismethod to solve the inverse source problem of the time–space fractional diffusion equation. Arqub
et al. (2021) utilized this method to generate the pointwise numerical solution to the time fractional Burgers’ model in the
overdetermination Robin boundary condition. Solution of integro-differential equations of fractional order has been studied
byBushnaqet al. (2013) using theRKHSmethod. Someclasses of time fractional partial differential equations subject to initial
and Neumann boundary conditions have been solved by Omar Abu Arqub (2017) with the help of fitted RKHS method.

2.5.8 Wavelet Method

Awavelet approach is a useful tool for understanding dynamic systems and differential equations that arise in other fields of
science and engineering. Wavelet is a wave-like oscillation with an amplitude that starts at zero and grows monotonically
until decreasing back to zero. A wavelet series is frequently expressed as a collection of orthonormal basis functions or a
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complete square-integrable function. Wavelet classes are divided into three categories: discrete, continuous, and multire-
solution-based wavelets. Discrete wavelets are often considered over a discrete subset of the upper half-plane, whereas con-
tinuous wavelets are projected over continuous function space. Only a finite number of wavelet coefficients are considered
while evaluating discrete wavelets, which sometimes makes themmathematically difficult. Multiresolution-based wavelets
are recommended in these situations.
Meyer (1989) investigated orthonormal wavelets over real line R in the mid-1980s. Ingrid Daubechies gradually con-

structed compactly supported orthogonal wavelets known as Daubechies wavelets (Daubechies 1988). Daubechies wavelets
are sufficiently smooth, orthogonal, and compact. Nowadays, various orthogonal wavelets have been used in fractional real-
life physical models. A thorough examination of wavelets and their applications may be found in Ur Rehman and Khan
(2011), Hesameddini et al. (2012), Saeed (2014), and Ur Rehman et al. (2020).

2.5.9 The Sine-Gordon Expansion Method

This expansion method is based on the sine-Gordon equation to construct real- and complex-valued exact solutions. The
governing equation is reduced to a classical ordinary differential equation via the suitable wave transform. The order of
obtained polynomial-type solution is determined using the homogeneous balancing approach, which is based on the well-
known sine-Gordon equation. A system of algebraic equations is formed by equating the coefficients of the solution
powers. The resulting system provides the essential relationships between the parameters and coefficients to generate
the solutions. For a specific set of parameters, several solutions are evaluated. Korkmaz et al. (2020) implemented the
sine-Gordon expansion method to construct exact solutions for conformable time fractional equations in the regularized
long wave (RLW) class. The Estevez–Mansfield–Clarkson (EMC) equation and the (2 + 1)-dimensional Riemann wave
(RW) equation have remarkable applications in the field of plasma physics, fluid dynamics, optics, and image processing.
Kundu et al. (2021) have solved these two equations using this technique. New traveling wave solutions of the time frac-
tional Fitzhugh–Nagumo equation with the sine-Gordon expansion method have been obtained by Taşbozan and
Ali (2020).

2.5.10 The Jacobi Elliptic Equation Method

A fractional partial differential equation is turned into an ordinary differential equation of integer order using this approach,
which is based on a fractional complex transformation. The exact solutions are supposed to be represented as polynomials in
the Jacobi elliptic functions, including the Jacobi sine, Jacobi cosine, and Jacobi elliptic function of the third type. The
homogeneous balancing concept may be used to determine the polynomial degree. The obtained solutions include rational,
trigonometric, and hyperbolic functions. Furthermore, complex-valued, periodic, and soliton solutions have been explored.
Zheng (2014) investigated the exact solution of the space–time fractional Kortweg–de Vries (KdV) equation, the space–time
fractional Benjamin–Bona–Mahony (BBM) equation, and the space–time fractional (2 + 1)-dimensional breaking soliton
equations. Ünal et al. (2021) obtained the exact solutions of the space–time fractional symmetric regularized long wave
(SRLW) equation using a direct method based on the Jacobi elliptic functions. Zheng and Feng (2014) implemented this
method to solve the space fractional coupled Konopelchenko–Dubrovsky (KD) equations and the space–time fractional
Fokas equation defined in the sense of the modified Riemann–Liouville derivative. Feng (2016) applied this method to seek
Jacobi elliptic function solutions for the space–time fractional Kadomtsev–Petviashvili–Benjamin–Bona–Mahony (KPBBM)
equation and the (2 + 1)-dimensional space–time fractional Nizhnik–Novikov–Veselov system.

2.5.11 The Generalized Kudryashov Method

This method follows the same procedure as the Jacobi elliptic and sine-Gordon expansion methods. In the first step, a frac-
tional partial differential equation is transformed into an ordinary differential equation using a fractional complex trans-
formation, and its solutions are represented as polynomials. Using the homogeneous balancing concept, the polynomial
degree can then be determined. Next, a system of the algebraic equation can be generated. By solving this system of an
algebraic equation and substituting these constants values into the original equation, one can determine the exact solution.
The obtained solutions include symmetrical Fibonacci function solutions, hyperbolic function solutions, and rational solu-
tions. This method is efficient and can establish new solutions for different types of fractional differential equations. Selvaraj
et al. (2020) obtained the solution of the time fractional generalized Burgers–Fisher equation (TF-GBF) using the general-
ized Kudryashov method. Using the generalized Kudryashov method, the exact solutions of the nonlinear fractional double
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sinh-Poisson equation has been derived in Demiray and Bulut (2016). The modified Kudryashov method is applied to com-
pute an approximation to the solutions of the space–time fractional modified BBM equation and the space–time fractional
potential Kadomtsev–Petviashvili equation (Ege and Misirli 2014). Demiray et al. (2014) used this technique to find exact
solutions of the time fractional Burgers equation, time fractional Cahn–Hilliard equation, and time fractional generalized
third-order KdV equation.
Apart from the earlier-discussed methods, the interested author may follow different analytical/semi-analytical and

expansion methods given in Chapters 3–25.
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3

Adomian Decomposition Method

3.1 Introduction

In Chapter 1, we have already discussed preliminaries and notations of fractional calculus. The development of recent and
robust methods for solving linear and nonlinear ordinary/partial/fractional differential equations has been demonstrated in
Chapter 2. In this chapter, we will discuss about Adomian decomposition method (ADM). The ADMwas first introduced by
Adomian in the early 1980s (Adomian 1990; Wazwaz 1998). It is a semi-analytical approach for solving linear and nonlinear
ordinary/partial/fractional differential equations. It allows us to handle both nonlinear initial and boundary values pro-
blems. The method of solution of this method (Evans and Raslan 2005; Momani and Odibat 2006) is based primarily on
decomposing the nonlinear operator equation to a set of functions. Each series term is constructed from a polynomial gen-
erated by expanding an analytic function into a power series. The theoretical formulation of this technique is usually quite
simple, but the actual difficulty arises when calculating the polynomials involved or when proving the convergence of the
series of functions. In this chapter, we present the ADM procedure to solve linear and nonlinear fractional partial differ-
ential equations (PDEs) along with examples.
In the subsequent sections, firstly, the theories behind the method with respect to fractional order are given. Then the

systematic study of the technique, as mentioned earlier, and two problems are addressed. It is worth noting that the two
simple example problems of fractional differential equations are investigated to have an easy understanding of the method.

3.2 Basic Idea of ADM

Let us consider a general nonlinear nonhomogeneous PDE in the following form (Bildik and Konuralp 2006):

Lu x, t + Ru x, t + Nu x, t = f x, t , 3 1

where L is the highest order differential operator and easily invertible, R is the linear differential operator of the order less
than L, f (x, t) is the source term, and Nu(x, t) represents the nonlinear term. The solution function u(x, t) is assumed to be
bounded, and the nonlinear term Nu satisfies the Lipschitz condition, that is |Nu−Nv|≤ c|u− v|, where c is a positive
constant. Applying the inverse operator L−1 on both sides of Eq. (3.1), we obtain

u x, t = −L− 1Ru x, t −L− 1Nu x, t + L− 1f x, t + ϕ, 3 2

where ϕ satisfies Lϕ= 0 and the initial conditions. If L = Dα
t in the Caputo sense, then L− 1 = Jαt whose expression is given in

Chapter 1. Now, the solution may be defined by the method of decomposition provided in Eq. (3.2) by the following infinite
series as:

u x, t =
∞

n = 0

un x, t 3 3

The nonlinear term Nu is then decomposed as:

Nu =
∞

n = 0

An, 3 4
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where An s are the Adomian polynomials and An depends on u0, u1, u2, …, un. The Adomian polynomials can be defined as
(Adomian 1990; Wazwaz 1998):

An =
1
n

dn

dλn
N

∞

n = 0

λnun
λ = 0

, n = 0, 1, 2,… 3 5

where λ is a grouping parameter of convenience.
For clarity, a few Adomian polynomials are listed as follows (Wazwaz 1999; Jafari and Daftardar-Gejji 2006; Ghor-

bani 2009):

A0 =N u0 ,

A1 =
d
dλ

N u0 + u1λ
λ=0

= u1N 1 u0 ,

A2 =
1
2

d2

dλ2
N u0 + u1λ+ u2λ

2

λ=0

=u2N 1 u0 +
1
2
u21N

2 u0 ,

A3 =
1
3

d3

dλ3
N u0 + u1λ+ u2λ

2 +u3λ
3

λ=0
=u3N 1 u0 +u1u2N 2 u0 +

1
3
u31N

3 u0 ,

A4 =
1
4

d4

dλ4
N u0 + u1λ+u2λ

2 +u3λ
3 +u4λ

4

λ=0
= u4N 1 u0 +

1
2
u22 +u1u3 N 2 u0 +

1
2
u21u2N

3 u0 +
1
4
u41N

4 u0 ,

3 6

Then, substituting Eqs. (3.3) and (3.4) into Eq. (3.2), we have

u x, t =
∞

n = 0

un x, t = −L− 1R
∞

n = 0

un x, t −L− 1
∞

n = 0

An + L− 1f x, t + ϕ 3 7

The following expressions can be obtained from Eq. (3.7):

u0 = L− 1f + ϕ

u1 = − L− 1R u0 − L− 1A0

u2 = − L− 1R u1 − L− 1A1

un + 1 = −L− 1R un − L− 1An

3 8

If we calculate all the termsun s, thenwe get the exact solution. But, in actual practice, this processmay take a longer time. To

achieve an acceptable solution, itmaybe approximated by the truncated series
N

n = 0
un (by using the convergence of the series).

3.3 Numerical Examples

Here, we solve a linear fractional one-dimensional heat-like problem in Example 3.1 and a nonlinear advection equation in
Example 3.2 for a clear understanding of the ADM. It is worthmentioning that the ADM can also be used for handling linear
and nonlinear fractional differential equations.

Example 3.1 Let us consider the one-dimensional heat-like model (Özis and Agırseven 2008; Sadighi et al. 2008) as:

Dα
t u x, t =

1
2
x2uxx x, t , 0 < x < 1, t > 0, 0 < α ≤ 1, 3 9
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with the boundary conditions (BCs):

u 0, t = 0, u 1, t = et 3 10

and initial condition (IC):

u x, 0 = x2 3 11

Solution

Comparing Eq. (3.9) with Eq. (3.1), we have

L = Dα
t ,Ru x, t = −

1
2
x2uxx ,Nu x, t = 0 and source term f (x, t) = 0. Here L− 1 = Jαt , the inverse operator of Dα

t . Now,

applying the operator Jαt on both sides of Eq. (3.9), we have

u x, t = Jαt
1
2
x2uxx x, t + ϕ 3 12

Substituting Eq. (3.3) into Eq. (3.12), we get

u x, t =
∞

n = 0

un x, t = Jαt
1
2
x2

∞

n = 0

un x, t
xx

+ ϕ, 3 13

where ϕ = u(x, 0) = x2.
From Eq. (3.8), the following expressions are obtained successively:

u0 = L− 1f + ϕ = x2

u1 = −L− 1R u0 −L− 1A0 = − Jαt −
1
2
x2 u0 x, t xx − 0 = x2

tα

Γ 1 + α

u2 = −L− 1R u1 −L− 1A1 = − Jαt −
1
2
x2 u1 x, t xx − 0 = x2

t2α

Γ 1 + 2α

u3 = −L− 1R u2 −L− 1A2 = − Jαt −
1
2
x2 u2 x, t xx − 0 = x2

t3α

Γ 1 + 3α

un + 1 = − L− 1R un −L− 1An = − Jαt −
1
2
x2 un x, t xx − 0 = x2

t n + 1 α

Γ 1 + n + 1 α

So, the solution of the fractional heat-like Eq. (3.9) may be obtained as:

u x, t = lim
n ∞

un x, t =u0 x, t +u1 x, t + u2 x, t +

= x2 + x2
tα

Γ 1+ α
+ x2

t2α

Γ 1+ 2α
+ x2

t3α

Γ 1+ 3α
+ ,

= x2 1+
tα

Γ 1+ α
+

t2α

Γ 1+ 2α
+

t3α

Γ 1+ 3α
+ = x2E tα ,

3 14

where E(tα) is called the Mittag-Leffer function (one may refer to Chapter 1).
In particular, at α = 1, Eq. (3.14) reduces to u(x, t) = x2et which is same as the solution of Sadighi et al. (2008). From

Figure 3.1, it is concluded that if we increase the number of terms of solution, we may achieve a more accurate result.
Figures 3.2–3.5 illustrate the fourth-order solution plots of Example 3.1 at different values of α.
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Figure 3.1 Comparison plot of the present solution with the exact solution of Example 3.1 taking a different number of terms of
approximate solution.
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Figure 3.2 Fourth-order approximate solution plot of Example 3.1 at α = 1.
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Figure 3.3 Fourth-order approximate solution plot of Example 3.1 at α = 0.3.
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Example 3.2 Consider the following nonlinear advection equation (Wazwaz 2007)

∂αu
∂tα

+ u
∂u
∂x

= 0, 0 < α ≤ 1, 3 15

with the initial condition:

u x, 0 = − x 3 16

Solution

Equating Eq. (3.15) with Eq. (3.1), we have

L = Dα
t ,Ru x, t = 0,Nu x, t = u

∂u
∂x

and source term f (x, t) = 0. On applying Jαt on both sides of Eq. (3.15), we have

u x, t = − Jαt u x, t ux x, t + ϕ 3 17

Then, in the decomposition method, each of the nonlinear terms uux is formally expanded in terms of power series as:

uux =
∞

n = 0

An, 3 18

where An are the Adomian polynomials. Substituting Eqs. (3.3) and (3.18), Eq. (3.17) reduces to

u x, t =
∞

n = 0

un x, t = − Jαt

∞

n = 0

An + ϕ, 3 19

where ϕ = u(x, 0) = − x.
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Figure 3.4 Fourth-order approximate solution plot of Example 3.1 at α = 0.5.
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Figure 3.5 Fourth-order approximate solution plot of Example 3.1 at α = 0.7.
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In order to solve our problem, these Adomian polynomials have to be generalized in the following way (Adomian 1990;
Wazwaz 1998):

An =
1
n

dn

dλn
N

∞

n = 0

λnun
∂

∂x

∞

n = 0

λnun
λ = 0

3 20

The first few terms of the Adomian polynomials are derived as follows:

A0 = u0
∂

∂x
u0,

A1 =
d
dλ

u0 + u1λ
∂u0
∂x

+ λ
∂u1
∂x λ=0

= u0
∂u1
∂x

+u1
∂u0
∂x

,

A2 =
1
2

d2

dλ2
u0 +u1λ+ u2λ

2 ∂u0
∂x

+ λ
∂u1
∂x

+ λ2
∂u2
∂x λ=0

=u0
∂u2
∂x

+ u1
∂u1
∂x

+ u2
∂u0
∂x

,

similarly

A3 = u0
∂u3
∂x

+ u1
∂u2
∂x

+ u2
∂u1
∂x

+ u3
∂u0
∂x

,

and so on.
Using Eq. (3.8), we may obtain

u0 = L−1f +ϕ= −x

u1 = −L−1R u0 −L−1A0 = −0−Jαt u0
∂

∂x
u0 = −x

tα

Γ 1+ α
,

u2 = −L−1R u1 −L−1A1 = −0−Jαt u0
∂u1
∂x

+ u1
∂u0
∂x

= −2x
t2α

Γ 1+ 2α
,

u3 = −L−1R u2 −L−1A2 = −0−Jαt u0
∂u2
∂x

+ u1
∂u1
∂x

+u2
∂u0
∂x

= −4x
t3α

Γ 1+ 3α
−
xΓ 1+ 2α

Γ 1+ α 2

t3α

Γ 1+ 3α

So, the solution of Eq. (3.15) may be obtained as:

u x, t = lim
n ∞

un x, t =u0 x, t + u1 x, t +u2 x, t +

= −x−x
tα

Γ 1+ α
−2x

t2α

Γ 1+ 2α
−4x

t3α

Γ 1+ 3α
−

xΓ 1+ 2α

Γ 1+ α 2

t3α

Γ 1+ 3α
− ,

3 21
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Figure 3.6 Comparison plot of the present solution with the exact solution of Example 3.2 taking a different number of terms of
approximate solution.
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Figure 3.8 Third-order approximate solution plot of Example 3.2 at α = 0.3.
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Figure 3.7 Third-order approximate solution plot of Example 3.2 at α = 1.
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Figure 3.9 Third-order approximate solution plot of Example 3.2 at α = 0.5.
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Particularly at α = 1, Eq. (3.21) reduces to a closed-form solution u x, t =
x

t− 1
, which is same as the solution of Wazwaz

(2007). Figure 3.6 shows that increasing the number of terms in the solution may give a more accurate result.
Figures 3.7–3.10 provide the third-order approximate solution plots of Example 3.2 for various α values.

References

Adomian, G. (1990). A review of the decomposition method and some recent results for nonlinear equations. Mathematical and

Computer Modelling 13 (7): 17–43.
Bildik, N. and Konuralp, A. (2006). The use of variational iteration method, differential transform method and Adomian

decomposition method for solving different types of nonlinear partial differential equations. International Journal of Nonlinear
Sciences and Numerical Simulation 7 (1): 65–70.

Evans, D.J. and Raslan, K.R. (2005). The Adomian decomposition method for solving delay differential equation. International
Journal of Computer Mathematics 82 (1): 49–54.

Ghorbani, A. (2009). Beyond Adomian polynomials: He polynomials. Chaos, Solitons, and Fractals 39 (3): 1486–1492.
Jafari, H. and Daftardar-Gejji, V. (2006). Revised Adomian decomposition method for solving systems of ordinary and fractional

differential equations. Applied Mathematics and Computation 181 (1): 598–608.
Momani, S. and Odibat, Z. (2006). Analytical solution of a time-fractional Navier–Stokes equation by Adomian decomposition

method. Applied Mathematics and Computation 177 (2): 488–494.
Özis, T. and Agırseven, D. (2008). He’s homotopy perturbation method for solving heat-like and wave-like equations with variable

coefficients. Physics Letters A 372: 5944–5950.
Sadighi, A., Ganji, D.D., Gorji, M., and Tolou, N. (2008). Numerical simulation of heat-like models with variable coefficients by the

variational iteration method. Journal of Physics: Conference Series 96: 012083.
Wazwaz, A.M. (1998). A comparison between Adomian decomposition method and Taylor series method in the series solutions.

Applied Mathematics and Computation 97 (1): 37–44.
Wazwaz, A.M. (1999). A reliable modification of Adomian decomposition method. Applied Mathematics and Computation

102 (1): 77–86.
Wazwaz, A.M. (2007). A comparison between the variational iteration method and adomian decomposition method. Journal of

Computational and Applied Mathematics 207: 129–136.

105 50
t

0
x

–5 –5
–10 –10

So
lu

tio
n

3000

2000

1000

0

–1000

–2000

–3000
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38 3 Adomian Decomposition Method



4

Adomian Decomposition Transform Method

4.1 Introduction

In Chapter 3, we have already discussed the Adomian decomposition method (ADM), which is a semi-analytical approach
for solving differential equations. In this chapter, we will discuss the hybrid methods, which are the coupling of ADM with
various transformmethods, viz. Laplace transform (LT), Sumudu transform (ST), Elzaki transform (ET), and Aboodh trans-
form (AT). With the combination of these transform methods, ADM is called the Adomian decomposition transform
method (ADTM) (Mohammed and Salim 2018; Ahmed et al. 2019; Thabet and Kendre 2019; Khalouta and Abdelouahab
2020). Although these four transformmethods are helpful for solving fractional differential equations, these methods some-
times fail to handle nonlinear terms arising in the fractional differential equations. These difficulties may be overcome by
coupling these transform methods with ADM. The theories behind the four transform methods with respect to fractional
order are introduced in the subsequent sections. It is worth mentioning that two simple application example problems of
fractional differential equations are investigated using all four methods.

4.2 Transform Methods for the Caputo Sense Derivatives

Definition 4.1 The LT of the Caputo fractional derivative is defined as (Baleanu and Jassim 2019; Faraz et al. 2010):

L Dnα
t u x, t = snαL u x, t −

n− 1

k = 0

s nα− k− 1 u k x, 0 , n− 1 < nα ≤ 1,n N 4 1

Definition 4.2 The ST of the Caputo fractional derivative is defined as (Jena and Chakraverty 2019):

S Dnα
t u x, t = s− nαS u x, t −

n− 1

k = 0

s− nα + ku k x, 0 , n− 1 < nα ≤ 1,n N 4 2

Definition 4.3 The ET of the Caputo fractional derivative is defined as (Jena and Chakraverty 2019):

E Dnα
t u x, t =

E u x, t
snα

−
n− 1

k = 0

sk− nα + 2u k x, 0 , n− 1 < nα ≤ n,n N 4 3

Definition 4.4 The AT of the Caputo fractional derivative is defined as (Aboodh et al. 2017; Jena and Chakraverty 2019):

A Dnα
t u x, t = snαA u x, t −

n− 1

k = 0

s− k + nα− 2u k x, 0 , n− 1 < nα ≤ n,n N 4 4

Table 4.1 shows the transforms of some standard functions with respect to the aforementioned four transform methods
and their definitions.
Following section deals with the systematic study of four hybrid methods, namely Adomian decomposition Laplace trans-

form method (ADLTM), Adomian decomposition Sumudu transform method (ADSTM), Adomian decomposition Elzaki
transform method (ADETM), and Adomian decomposition Aboodh transform method (ADATM), one after another.
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4.3 Adomian Decomposition Laplace Transform Method (ADLTM)

To clarify the fundamental idea of ADLTM, the fractional-order nonlinear nonhomogeneous partial differential equation
(PDE) with initial conditions (ICs) are considered as:

Dnα
t u x, t + Ru x, t + Nu x, t = f x, t , n− 1 < nα ≤ n 4 5

subject to ICs

u k x, 0 = gk x , k = 0, 1,…,n− 1 4 6

where Dnα
t =

∂nα

∂tnα
is the fractional differential operator in the Caputo sense, R, N are respectively linear and nonlinear dif-

ferential operators, respectively, and f (x, t) is the source term. The ADLTM approach involves mainly two stages. In the first
stage, LT is taken on both sides of Eq. (4.5), and then in the second stage, ADM is applied where decomposition of the
nonlinear term is done using Adomian polynomials. First, by operating LT on both sides of Eq. (4.5), we obtain

L Dnα
t u x, t = L f x, t − L Ru x, t − L Nu x, t 4 7

Using differentiation property (Eq. (4.1)) of LT, we obtain

snαL u x, t −
n− 1

k = 0

snα− k− 1u k x, 0 = L f x, t −L Ru x, t −L Nu x, t 4 8

L u x, t =
1
snα

n− 1

k = 0

snα− k− 1u k x, 0 +
1
snα

L f x, t −
1
snα

L Ru x, t −
1
snα

L Nu x, t 4 9

Applying inverse LT on both sides of Eq. (4.9), we find

u x, t = F x, t − L− 1 1
snα

L Ru x, t − L− 1 1
snα

L Nu x, t 4 10

Here, F(x, t) represents the term coming from the IC and source term (first two terms on the right-hand side of Eq. (4.9)).
Next, in order to implement ADM, first we need to consider the solution in series form as:

Table 4.1 Transforms of some essential functions.

Functions Laplace transform Sumudu transform Elzaki transform Aboodh transform

Definitions L f t = f s

=

∞

0

e−st f t dt

S g t = g s

=

∞

0

e− t f st dt

=
1
s
f

1
s

E h t = h s

= s

∞

0

e
− t
s f t dt

= sf
1
s

A p t = p s

=
1
s

∞

0

e−st f t dt

=
1
s
f s

1 1
s

1 s2 1
s2

tα Γ 1 + α

sα + 1

sαΓ(1 + α) sα+ 2Γ(1 + α) Γ 1 + α

sα + 2

eat 1
s− a

1
1− as

s2

1− as

1
s 1− s

sin(at) a
s2 + a2

as
1 + a2s2

as3

1 + a2s2

a
s s2 + a2

cos(at) s
s2 + a2

1
1 + s2a2

s
1 + s2a2

1
s2 + a2

40 4 Adomian Decomposition Transform Method



u x, t =
∞

n = 0

un x, t 4 11

and the nonlinear term may be decomposed by using Adomian polynomials (Wazwaz 1999) as:

Nu x, t =
∞

n = 0

An 4 12

where An denotes the Adomian polynomials and which is defined as follows:

An u0, u1,… , un =
1
n

∂n

∂λn
N

∞

i = 0

λiui x, t
λ = 0

, n = 0, 1, 2,… 4 13

One may go through the reference (Wazwaz 1999) for a detailed derivation of Eq. (4.13), and the first few terms of An are
included in Chapter 3. Substituting Eqs. (4.11) and (4.12) into Eq. (4.10), one may get the following expression:

∞

n = 0

un x, t = F x, t − L− 1 1
snα

L R
∞

n = 0

un x, t −L− 1 1
snα

L
∞

n = 0

An 4 14

An iterative algorithm may be obtained by matching both sides of Eq. (4.14) as follows:

u0 x, t = F x, t ,

u1 x, t = −L− 1 1
snα

L Ru0 x, t −L− 1 1
snα

L A0 ,

u2 x, t = −L− 1 1
snα

L Ru1 x, t −L− 1 1
snα

L A1 ,

u3 x, t = −L− 1 1
snα

L Ru2 x, t −L− 1 1
snα

L A2 ,

un x, t = − L− 1 1
snα

L Run− 1 x, t −L− 1 1
snα

L An− 1

So, the solution of Eq. (4.5) may be obtained as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t + , 4 15

4.4 Adomian Decomposition Sumudu Transform Method (ADSTM)

Similar to the aforementioned procedure, applying ST on both sides of Eq. (4.5), we have

S Dnα
t u x, t = S f x, t − S Ru x, t − S Nu x, t 4 16

Using differentiation property of (Eq. (4.2)) for ST in Eq. (4.16), we obtain

s− nαS u x, t −
n− 1

k = 0

s− nα + ku k x, 0 = S f x, t − S Ru x, t − S Nu x, t 4 17

S u x, t = snα
n− 1

k = 0

s− nα + ku k x, 0 + snαS f x, t − snαS Ru x, t − snαS Nu x, t 4 18

Applying inverse ST on both sides of Eq. (4.18), we find

u x, t = F x, t − S− 1 snαS Ru x, t − S− 1 snαS Nu x, t 4 19
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One may see reference (Jena and Chakraverty 2019) for a detailed description of this method. Substituting Eqs. (4.11) and
(4.12) into Eq. (4.19), we may have the following expression:

∞

n = 0

un x, t = F x, t − S− 1 snαS R
∞

n = 0

un x, t + S− 1 snαS
∞

n = 0

An 4 20

By comparing both sides of Eq. (4.20), we may have the following expressions:

u0 x, t = F x, t ,

u1 x, t = − S− 1 snαS Ru0 x, t − S− 1 snαS A0 ,

u2 x, t = − S− 1 snαS Ru1 x, t − S− 1 snαS A1 ,

u3 x, t = − S− 1 snαS Ru2 x, t − S− 1 snαS A2 ,

un x, t = − S− 1 snαS Run− 1 x, t − S− 1 snαS An− 1 ,

So, the solution of Eq. (4.5) may be obtained as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t + , 4 21

4.5 Adomian Decomposition Elzaki Transform Method (ADETM)

Applying ET on both sides of Eq. (4.5), we obtain

E Dnα
t u x, t = E f x, t −E Ru x, t −E Nu x, t 4 22

Using differentiation property (Eq. (4.3)) of ET, we have

s− nαE u x, t −
n− 1

k = 0

sk− nα + 2u k x, 0 = E f x, t −E Ru x, t −E Nu x, t 4 23

E u x, t = snα
n− 1

k = 0

sk− nα + 2u k x, 0 + snαE f x, t − snαE Ru x, t − snαE Nu x, t 4 24

Inverse ET on both sides of Eq. (4.24) reduces to the following equation:

u x, t = F x, t −E− 1 snαE Ru x, t −E− 1 snαE Nu x, t 4 25

By plugging Eqs. (4.11) and (4.12) into Eq. (4.25), we have the expression as follows:

∞

n = 0

un x, t = F x, t − E− 1 snαE R
∞

n = 0

un x, t + E− 1 snαE
∞

n = 0

An 4 26

Comparing both sides of Eq. (4.26), we have the following approximations successively:

u0 x, t = F x, t ,

u1 x, t = −E− 1 snαE Ru0 x, t −E− 1 snαE A0 ,

u2 x, t = −E− 1 snαE Ru1 x, t −E− 1 snαE A1 ,

u3 x, t = −E− 1 snαE Ru2 x, t −E− 1 snαE A2 ,

un x, t = −E− 1 snαE Run− 1 x, t −E− 1 snαE An− 1 ,
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So, the solution of Eq. (4.5) may be written as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t + , 4 27

4.6 Adomian Decomposition Aboodh Transform Method (ADATM)

Applying AT on both sides of Eq. (4.5) reduces to

A Dnα
t u x, t = A f x, t −A Ru x, t −A Nu x, t 4 28

Further, using Eq. (4.4), Eq. (4.28) reduces to the following expression:

snαA u x, t −
n− 1

k = 0

s− k + nα− 2u k x, 0 = A f x, t −A Ru x, t −A Nu x, t 4 29

A u x, t = s− nα
n− 1

k = 0

s− k + nα− 2u k x, 0 + s−nαA f x, t − s− nαA Ru x, t − s− nαA Nu x, t 4 30

Applying inverse AT on both sides of Eq. (4.30), we get

u x, t = F x, t −A− 1 s− nαA Ru x, t −A− 1 s− nαA Nu x, t 4 31

A detailed description of this transform may be found in the reference (Aboodh et al. 2017; Jena and Chakraverty 2019).
Putting Eqs. (4.11) and (4.12) into Eq. (4.31), we get

∞

n = 0

un x, t = F x, t − A− 1 s− nαA R
∞

n = 0

un x, t + A− 1 s− nαA
∞

n = 0

An 4 32

Comparing both sides of Eq. (4.32), we have the successive approximations as:

u0 x, t = F x, t ,

u1 x, t = −A− 1 s− nαA Ru0 x, t −A− 1 s− nαA A0 ,

u2 x, t = −A− 1 s− nαA Ru1 x, t −A− 1 s− nαA A1 ,

u3 x, t = −A− 1 s− nαA Ru2 x, t −A− 1 s− nαA A2 ,

un x, t = −A− 1 s− nαA Run− 1 x, t −A− 1 s− nαA An− 1 ,

So, the solution of Eq. (4.5) may be written as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t + , 4 33

Next, we solve two test problems in each of the aforementioned methods to demonstrate the present techniques.

4.7 Numerical Examples

4.7.1 Implementation of ADLTM

Example 4.1 Let us consider the one-dimensional heat-like model (Özis and Agırseven 2008; Sadighi et al. 2008) as:

Dα
t u x, t =

1
2
x2uxx x, t , 0 < x < 1, t > 0, 0 < α ≤ 1, 4 34
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subject to the boundary conditions (BCs):

u 0, t = 0, u 1, t = et , 4 35

and IC:

u x, 0 = x2 4 36

Solution

Applying LT on both sides of Eq. (4.34) with IC and BCs, we have

sαL u x, t − sα− 1u x, 0 =
1
2
L x2uxx 4 37

L u x, t =
s− α

2
L x2uxx +

u x, 0
s

4 38

L u x, t =
s− α

2
L x2uxx +

x2

s
4 39

Taking inverse LT on both sides of Eq. (4.39) gives

u x, t = L− 1 s− α

2
L x2uxx + x2 4 40

According to the ADLTM, assuming a series solution for the PDE as Eq. (4.11) and by replacing the nonlinear term by
Eq. (4.12) (in this problem, there has no nonlinear term), we obtain

∞

n = 0

un x, t = x2 + L− 1 s− α

2
L x2

∞

n = 0

un x, t xx 4 41

By comparing both sides of Eq. (4.41), we obtain

u0 x, t = x2,

u1 x, t = L− 1 s− α

2
L x2u0xx

= L− 1 s− α

2
L x2

∂2

∂x2
u0

= L− 1 s− α

2
L 2x2

= L− 1 x2

sα + 1
= x2

tα

Γ 1 + α
,

u2 x, t = L− 1 s− α

2
L x2u1xx

= L− 1 s− α

2
L x2

∂2

∂x2
u1

= L− 1 s− α

2
L

2tα

Γ 1 + α
x2

= L− 1 x2

s2α + 1
= x2

t2α

Γ 1 + 2α
,

u3 x, t = L− 1 s− α

2
L x2u2xx

= x2
t3α

Γ 1 + 3α
,
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So, the solution of the fractional heat-like Eq. (4.34) may be obtained as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t +

= x2 + x2
tα

Γ 1 + α
+ x2

t2α

Γ 1 + 2α
+ x2

t3α

Γ 1 + 3α
+ ,

= x2 1 +
tα

Γ 1 + α
+

t2α

Γ 1 + 2α
+

t3α

Γ 1 + 3α
+ = x2E tα ,

4 42

where E(tα) is called theMittag-Leffer function. In particular, at α= 1, Eq. (4.42) reduces to u(x, t) = x2et, which is same as the
solution of Sadighi et al. (2008).

Example 4.2 Consider the following nonlinear advection equation (Wazwaz 2007)

∂αu
∂tα

+ u
∂u
∂x

= 0, 0 < α ≤ 1, 4 43

with IC:

u x, 0 = − x 4 44

Solution

Applying LT on both sides of Eq. (4.43) with IC, we have

sαL u x, t − sα− 1u x, 0 = −L uux 4 45

L u x, t = − s− αL uux +
u x, 0

s
4 46

L u x, t = − s− αL uux −
x
s

4 47

Operating inverse LT on both sides of Eq. (4.47) gives

u x, t = −L− 1 s− αL uux − x 4 48

As per the ADLTM, assuming a series solution for the PDE as Eq. (4.11) and by replacing the nonlinear term by Eq. (4.12),
we get

∞

n = 0

un x, t = − x− L− 1 s− αL
∞

n = 0

An 4 49

Where the Adomian polynomials An for the nonlinear term uux are given by:

A0 = u0
∂

∂x
u0,

A1 = u0
∂

∂x
u1 + u1

∂

∂x
u0,

A2 = u0
∂

∂x
u2 + u1

∂

∂x
u1 + u2

∂

∂x
u0,

4 50
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Next, the successive approximations to the solution of Eq. (4.43) may be found as:

u0 x, t = − x,

u1 x, t = − L− 1 s− αL A0

= −L− 1 s− αL u0
∂

∂x
u0

= −L− 1 s− αL x

= −L− 1 x
sα + 1

= − x
tα

Γ 1 + α
,

u2 x, t = − L− 1 s− αL A1

= −L− 1 s− αL u0
∂

∂x
u1 + u1

∂

∂x
u0

= −L− 1 s− αL 2x
tα

Γ 1 + α

= −L− 1 2x
s2α + 1

= − 2x
t2α

Γ 1 + 2α
,

u3 x, t = − L− 1 s− αL A2

= −L− 1 s− αL u0
∂

∂x
u2 + u1

∂

∂x
u1 + u2

∂

∂x
u0

= −L− 1 s− αL 4x
t2α

Γ 1 + 2α
+ x

t2α

Γ 1 + α 2

= −L− 1 4x
s3α + 1

+
xΓ 1 + 2α

Γ 1 + α 2s3α + 1
,

= − 4x
t3α

Γ 1 + 3α
−

xΓ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α

So, the solution to Eq. (4.43) may be obtained as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t +

= − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
− ,

4 51

Particularly at α = 1, Eq. (4.51) reduces to closed-form solution u x, t =
x

t− 1
, which is same as the solution of Waz-

waz (2007).

4.7.2 Implementation of ADSTM

Applying ST on both sides of Eq. (4.34) with Eqs. (4.35) and (4.36), we obtain

s− αS u x, t − s− αu x, 0 =
1
2
S x2uxx 4 52

S u x, t =
sα

2
S x2uxx + u x, 0 4 53

S u x, t =
sα

2
S x2uxx + x2 4 54

Taking inverse ST on both sides of Eq. (4.54) gives

u x, t = S− 1 sα

2
S x2uxx + x2 4 55
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Applying ADM, we have

∞

n = 0

un x, t = x2 + S− 1 sα

2
S x2

∞

n = 0

un x, t xx 4 56

Comparing both sides of Eq. (4.56), we get

u0 x, t = x2,

u1 x, t = S− 1 sα

2
S x2u0xx

= S− 1 sα

2
S x2

∂2

∂x2
u0

= S− 1 sα

2
S 2x2

= S− 1 x2sα = x2
tα

Γ 1 + α
,

u2 x, t = S− 1 sα

2
S x2u1xx

= S− 1 sα

2
S x2

∂2

∂x2
u1

= S− 1 sα

2
S

2tα

Γ 1 + α
x2

= S− 1 x2s2α = x2
t2α

Γ 1 + 2α
,

u3 x, t = S− 1 sα

2
S x2u2xx

= x2
t3α

Γ 1 + 3α
,

So, the solution of the fractional heat-like Eq. (4.34) may be obtained as:

u x, t = x2 + x2
tα

Γ 1 + α
+ x2

t2α

Γ 1 + 2α
+ x2

t3α

Γ 1 + 3α
+ = x2E tα , 4 57

In particular, at α = 1, Eq. (4.57) reduces to u(x, t) = x2et, which is same as the solution of Sadighi et al. (2008).
Further, operating ST on both sides of Eq. (4.43) with IC, we have

s− αS u x, t − s− αu x, 0 = − S uux 4 58

S u x, t = − sαS uux +
u x, 0
sα

4 59

S u x, t = − sαS uux −
x
sα

4 60

Applying inverse ST on both sides of Eq. (4.60) gives

u x, t = − S− 1 sαS uux − x 4 61

By ADM, we have

∞

n = 0

un x, t = − x− S− 1 sαS
∞

n = 0

An 4 62
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Using Eq. (4.50) and comparing both sides of Eq. (4.62), we obtain

u0 x, t = − x,

u1 x, t = − S− 1 sαS A0

= − S− 1 sαS u0
∂

∂x
u0

= − S− 1 sαS x

= − S− 1 xsα = − x
tα

Γ 1 + α
,

u2 x, t = − S− 1 sαS A1

= − S− 1 sαS u0
∂

∂x
u1 + u1

∂

∂x
u0

= − S− 1 sαS 2x
tα

Γ 1 + α

= − S− 1 2xs2α = − 2x
t2α

Γ 1 + 2α
,

u3 x, t = − S− 1 sαS A2

= − S− 1 sαS u0
∂

∂x
u2 + u1

∂

∂x
u1 + u2

∂

∂x
u0

= − S− 1 sαS 4x
t2α

Γ 1 + 2α
+ x

t2α

Γ 1 + α 2

= − S− 1 4xs3α +
x Γ 1 + 2α s3α

Γ 1 + α 2 ,

= − 4x
t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α

So, the solution to Eq. (4.43) may be obtained as:

u x, t = = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
−………… , 4 63

which is same as the solution of Wazwaz (Wazwaz, 2007) at α = 1.

4.7.3 Implementation of ADETM

Now, taking ET on both sides of Eq. (4.34) with IC and BCs, we get

s− αE u x, t − s− α + 2u x, 0 =
1
2
E x2uxx 4 64

E u x, t = s2u x, 0 +
sα

2
E x2uxx 4 65

E u x, t = s2x2 +
sα

2
E x2uxx 4 66

Inverse ET on both sides of Eq. (4.66) gives

u x, t = x2 + E− 1 sα

2
E x2uxx 4 67
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Through ADM, we have

∞

n = 0

un x, t = x2 + E− 1 sα

2
E x2

∞

n = 0

un x, t xx 4 68

Comparing both sides of Eq. (4.68), we obtain

u0 x, t = x2,

u1 x, t = E− 1 sα

2
E x2u0xx

= E− 1 sα

2
E x2

∂2

∂x2
u0

= E− 1 sα

2
E 2x2

= E− 1 x2sα = x2
tα

Γ 1 + α
,

u2 x, t = E− 1 sα

2
E x2u1xx

= E− 1 sα

2
E x2

∂2

∂x2
u1

= E− 1 sα

2
E

2tα

Γ 1 + α
x2

= E− 1 x2s2α = x2
t2α

Γ 1 + 2α
,

u3 x, t = S− 1 sα

2
E x2u2xx

= x2
t3α

Γ 1 + 3α
,

So, the solution of Eq. (4.34) may be obtained as:

u x, t = = x2 + x2
tα

Γ 1 + α
+ x2

t2α

Γ 1 + 2α
+ x2

t3α

Γ 1 + 3α
+ 4 69

At α = 1, Eq. (4.69) is same as the solution of Sadighi et al. (2008).
Again by operating ET on both sides of Eq. (4.43) with IC, we have

s− αE u x, t − s− α + 2u x, 0 = −E uux 4 70

E u x, t = − sαE uux + s2u x, 0 4 71

E u x, t = − sαE uux − xs2 4 72

By inverse ET on both sides of Eq. (4.72), we have

u x, t = −E− 1 sαE uux − x 4 73

By ADM, we have

∞

n = 0

un x, t = − x−E− 1 sαE
∞

n = 0

An 4 74
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Using Eq. (4.50) and comparing both sides of Eq. (4.74), we obtain

u0 x, t = − x,

u1 x, t = −E− 1 sαE A0

= −E− 1 sαE u0
∂

∂x
u0

= −E− 1 sαE x

= −E− 1 xsα + 2 = − x
tα

Γ 1 + α
,

u2 x, t = −E− 1 sαE A1

= −E− 1 sαE u0
∂

∂x
u1 + u1

∂

∂x
u0

= −E− 1 sαE 2x
tα

Γ 1 + α

= −E− 1 2xs2α + 2 = − 2x
t2α

Γ 1 + 2α
,

u3 x, t = −E− 1 sαE A2

= −E− 1 sαE u0
∂

∂x
u2 + u1

∂

∂x
u1 + u2

∂

∂x
u0

= −E− 1 sαE 4x
t2α

Γ 1 + 2α
+ x

t2α

Γ 1 + α 2

= −E− 1 4xs3α + 2 +
xΓ 1 + 2α s3α + 2

Γ 1 + α 2 ,

= − 4x
t3α

Γ 1 + 3α
−

xΓ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α

So, the solution to Eq. (4.43) may be written as:

u x, t = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

xΓ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
− , 4 75

which is same as the solution of Wazwaz (Wazwaz, 2007) at α = 1.

4.7.4 Implementation of ADATM

Now, taking AT on both sides of Eq. (4.34) with IC and BCs, we have

sαA u x, t − sα− 2u x, 0 =
1
2
A x2uxx 4 76

A u x, t =
u x, 0
s2

+
s− α

2
A x2uxx 4 77

A u x, t =
x2

s2
+

s− α

2
A x2uxx 4 78
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Inverse AT on both sides of Eq. (4.78) reduces to

u x, t = x2 + A− 1 s− α

2
A x2uxx 4 79

Using ADM, we have

∞

n = 0

un x, t = x2 + A− 1 s− α

2
A x2

∞

n = 0

un x, t xx 4 80

Comparing both sides of Eq. (4.80), we obtain

u0 x, t = x2,

u1 x, t = A− 1 s−α

2
A x2u0xx

= A− 1 s− α

2
A x2

∂2

∂x2
u0

= A− 1 s− α

2
A 2x2

= A− 1 x2s− α− 2 = x2
tα

Γ 1 + α
,

u2 x, t = A− 1 s−α

2
A x2u1xx

= A− 1 s− α

2
A x2

∂2

∂x2
u1

= A− 1 s− α

2
A

2tα

Γ 1 + α
x2

= A− 1 x2s− 2α− 2 = x2
t2α

Γ 1 + 2α
,

u3 x, t = A− 1 s−α

2
A x2u2xx

= x2
t3α

Γ 1 + 3α
,

So, the solution of Eq. (4.34) may be obtained as:

u x, t = x2 + x2
tα

Γ 1 + α
+ x2

t2α

Γ 1 + 2α
+ x2

t3α

Γ 1 + 3α
+ = x2E tα , 4 81

In particular, at α = 1, Eq. (4.81) reduces to u(x, t) = x2et, which is same as the solution of Sadighi et al. (2008).
Again by operating AT on both sides of Eq. (4.43) with IC, we have

sαA u x, t − sα− 2u x, 0 = −A uux 4 82

A u x, t = − s− αA uux +
u x, 0
s2

4 83

A u x, t = − s− αA uux −
x
s2

4 84

By inverse AT on both sides of Eq. (4.84), we have

u x, t = −A− 1 s− αA uux − x 4 85

By ADM, we have

∞

n = 0

un x, t = − x−A− 1 s− αA
∞

n = 0

An 4 86
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Using Eq. (4.50) and comparing both sides of Eq. (4.86), we obtain

u0 x, t = − x,

u1 x, t = −A− 1 s− αA A0

= −A− 1 s− αA u0
∂

∂x
u0

= −A− 1 s− αA x

= −A− 1 xs− α− 2 = − x
tα

Γ 1 + α
,

u2 x, t = −A− 1 s− αA A1

= −A− 1 s− αA u0
∂

∂x
u1 + u1

∂

∂x
u0

= −A− 1 s− αA 2x
tα

Γ 1 + α

= −A− 1 2xs− 2α− 2 = − 2x
t2α

Γ 1 + 2α
,

u3 x, t = −A− 1 s− αA A2

= −A− 1 s− αA u0
∂

∂x
u2 + u1

∂

∂x
u1 + u2

∂

∂x
u0

= −A− 1 s− αA 4x
t2α

Γ 1 + 2α
+ x

t2α

Γ 1 + α 2

= −A− 1 4xs− 3α− 2 +
x Γ 1 + 2α s− 3α− 2

Γ 1 + α 2 ,

= − 4x
t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α

So, the solution to Eq. (4.43) may be written as:

u x, t = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
− , 4 87

Particularly at α = 1, Eq. (4.87) reduces to closed-form solution u x, t = x
t− 1, which is same as the solution of Waz-

waz (2007).
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5

Homotopy Perturbation Method

5.1 Introduction

In this chapter, we will discuss about homotopy perturbation method (HPM), which is again a semi-analytical approach for
solving linear and nonlinear ordinary/partial/fractional differential equations. HPM was first proposed by He (1999a). This
approach has been established using artificial parameters (Liu 1997). Interested readers may visit references (He 2003, 2004)
for more information. Almost all conventional perturbation methods are based on the assumption of small parameters.
However, most nonlinear problems have no small parameters, and the determination of small parameters needs a unique
art requiring special techniques. These small parameters are so sensitive that a slight change may influence the final result.
The right choice of small parameters yields optimal performance. However, an inappropriate choice of small parameters
leads to poor, even significant effects. Liu (1997) proposed the artificial parameter method and Liao (1995, 1997) contributed
to the homotopy analysis method to eradicate the presumption of small parameters. He (1999a, 1999b) also established a
technique called the variational iteration method (VIM), in which no small parameter assumptions are made, and is dis-
cussed in Chapter 9.
In the subsequent sections, firstly, the theories behind the method with respect to fractional order are addressed. Then the

systematic step-by-step procedure of the technique along with two problems are introduced.

5.2 Procedure for HPM

In order to illustrate the fundamental idea of HPM, the fractional-order nonlinear nonhomogeneous partial differential
equation with initial conditions (ICs) is considered as follows:

Dα
t u x, t + Ru x, t + Nu x, t = f x, t , n− 1 < α ≤ n, 5 1

subject to ICs:

u k x, 0 = gk x , k = 0, 1,…,n− 1, 5 2

where Dα
t =

∂α

∂tα
is the differential operator, Dα

t u x, t is the derivative of u(x, t) in the Caputo sense, R, N are the linear and

nonlinear differential operators, and f (x, t) is the source term. We shall next present the solution approach based on the
standard HPM. Let us now construct the following homotopy of Eq. (5.1) as (He 1999a):

1− p Dα
t u x, t + p Dα

t u x, t + Ru x, t + Nu x, t − f x, t = 0, 5 3

or

Dα
t u x, t + p Ru x, t + Nu x, t − f x, t = 0, 5 4

where p [0, 1] is an embedding parameter. If p = 0, then Eqs. (5.3) and (5.4) become

Dα
t u x, t = 0, 5 5
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and when p = 1 Eqs. (5.3) and (5.4) turn out to be the original Eq. (5.1).
First, we need to consider the solution in series form containing the embedding parameter p [0, 1] as:

u x, t =
∞

n = 0

pnun x, t , 5 6

and the nonlinear term may be decomposed by using He’s polynomials (Ghorbani 2009) as:

Nu x, t =
∞

n = 0

pnHn u 5 7

where Hn(u) denotes the He’s polynomials and which is defined as follows:

Hn u0, u1,…, un =
1
n

∂

∂pn
N

∞

n = 0

pnun x, t
p = 0

, n = 0, 1, 2,… 5 8

One may go through reference (Ghorbani 2009) for a detailed derivation of the Eq. (5.8). Substituting Eqs. (5.6) and (5.7)
into Eq. (5.4), we get the following expression:

Dα
t

∞

n = 0

pnun x, t = p f x, t −R
∞

n = 0

pnun x, t −N
∞

n = 0

pnHn u 5 9

By comparing the coefficients of the same powers of “p” on both sides of Eq. (5.9), we may have the following approx-
imations successively:

p0 Dα
t u0 x, t =0, 5 10

p1 Dα
t u1 x, t = f x, t −Ru0 x, t −NH0 u , 5 11

p2 Dα
t u2 x, t = −Ru1 x, t −NH1 u , 5 12

p3 Dα
t u3 x, t = −Ru2 x, t −NH2 u ,

5 13

pn Dα
t un x, t = −Run− 1 x, t −NHn− 1 u

5 14

Applying the operator Jαt , the inverse operator of Dα
t which is given in the previous chapter on both sides of the

aforementioned equations and using the ICs in Eq. (5.2), the first few terms of the HPM solution may be written as:

u0 x, t =
n− 1

k = 0

uk x, 0
tk

k
=

n− 1

k = 0

gk x
tk

k
, 5 15

u1 x, t = Jαt f x, t − Jαt Ru0 x, t − Jαt NH0 u , 5 16

u2 x, t = − Jαt Ru1 x, t − Jαt NH1 u , 5 17

and so on. So, the solution of Eq. (5.1) may be obtained as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t + 5 18

5.3 Numerical Examples

Here, we use the present method to solve a linear fractional one-dimensional heat-like problem in Example 5.1 and a non-
linear advection equation in Example 5.2. It is worth mentioning that the HPM can also be used for handling linear and
nonlinear fractional differential equations.
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Example 5.1 Let us consider the one-dimensional heat-like model (Özis and Agırseven 2008; Sadighi et al. 2008) as:

Dα
t u x, t =

1
2
x2uxx x, t , 0 < x < 1, t > 0, 0 < α ≤ 1, 5 19

with the boundary conditions (BCs):

u 0, t = 0, u 1, t = et, 5 20

and IC:

u x, 0 = x2 5 21

Solution

According to Eq. (5.4), let us construct the homotopy of Eq. (5.19) as follows:

Dα
t u x, t − p

1
2
x2uxx x, t = 0 5 22

Substituting Eq. (5.6) into Eq. (5.19), we obtain

Dα
t

∞

n = 0

pnun x, t − p
1
2
x2

∞

n = 0

pnun x, t
xx

= 0 5 23

Collecting the like power of “p” yields the following expressions:

p0 Dα
t u0 x, t = 0,

p1 Dα
t u1 x, t =

1
2
x2 u0 x, t xx ,

p2 Dα
t u2 x, t =

1
2
x2 u1 x, t xx ,

Applying the operator Jαt on both sides of the aforementioned expressions and using the initial as well as BCs Eqs. (5.20)
and (5.21), we have

p0 u0 x, t = u x, 0 = x2,

p1 u1 x, t = Jαt
1
2
x2 u0 x, t xx = x2

tα

Γ 1 + α
,

p2 u2 x, t = Jαt
1
2
x2 u1 x, t xx = x2

t2α

Γ 1 + 2α
,

p3 u3 x, t = Jαt
1
2
x2 u2 x, t xx = x2

t3α

Γ 1 + 3α
,

So, the solution of the fractional heat-like Eq. (5.19), as p 1, may be obtained as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t +

= x2 + x2
tα

Γ 1+ α
+ x2

t2α

Γ 1+ 2α
+ x2

t3α

Γ 1+ 3α
+ ,

= x2 1+
tα

Γ 1+ α
+

t2α

Γ 1+ 2α
+

t3α

Γ 1+ 3α
+ = x2E tα ,

5 24

where E(tα) is called the Mittag-Leffer function, which is given in Chapter 1.
In particular, at α= 1, Eq. (5.24) reduces to u(x, t) = x2et, which is same as the solution of Sadighi et al. (2008). It is worth

mentioning that by increasing the number of terms of solution, one may achieve a better approximate result, as shown in
Figure 5.1. Figures 5.2–5.5 show the fourth-order approximate solution plots of Example 5.1 at different values of α.
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Figure 5.1 Comparison plot of the present solution with the exact solution of Example 5.1 taking a different number of terms of
approximate solution.
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Figure 5.2 Fourth-order approximate solution plot of Example 5.1 at α = 1.
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Figure 5.3 Fourth-order approximate solution plot of Example 5.1 at α = 0.2.
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Example 5.2 Consider the following nonlinear advection equation (Wazwaz 2007):

∂αu
∂tα

+ u
∂u
∂x

= 0, 0 < α ≤ 1, 5 25

with IC:

u x, 0 = − x 5 26

Solution

According to Eq. (5.4), we can construct the following homotopy of Eq. (5.25):

Dα
t u x, t + p u x, t ux x, t = 0 5 27

Now using HPM, we obtain

Dα
t

∞

n = 0

pnun x, t + p
∞

n = 0

pnHn u = 0 5 28
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Figure 5.4 Fourth-order approximate solution plot of Example 5.1 at α = 0.4.
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Figure 5.5 Fourth-order approximate solution plot of Example 5.1 at α = 0.8.

5.3 Numerical Examples 59



Comparing the same power of “p”, the following expressions are obtained:

p0 Dα
t u0 x, t =0,

p1 Dα
t u1 x, t = −H0 u ,

p2 Dα
t u2 x, t = −H1 u ,

p3 Dα
t u3 x, t = −H2 u ,

5 29

Some of He’s polynomials Hn(u) (He 2003, 2004) for the term uux are

H0 u = u0
∂

∂x
u0,

H1 u = u0
∂

∂x
u1 + u1

∂

∂x
u0,

H2 u = u0
∂

∂x
u2 + u1

∂

∂x
u1 +u2

∂

∂x
u0,

5 30

Putting Eq. (5.30) into Eq. (5.29), we get

p0 Dα
t u0 x, t =0,

p1 Dα
t u1 x, t = −u0

∂

∂x
u0,

p2 Dα
t u2 x, t = −u0

∂

∂x
u1−u1

∂

∂x
u0,

p3 Dα
t u3 x, t = −u0

∂

∂x
u2−u1

∂

∂x
u1−u2

∂

∂x
u0,

5 31

Applying the operator Jαt on both sides of the aforementioned expressions and using the IC, we obtain

p0 u0 x, t = −x,

p1 u1 x, t = Jαt −x = −x
tα

Γ 1+ α
,

p2 u2 x, t = −Jαt 2x
tα

Γ 1+ α
= −2x

t2α

Γ 1+ 2α
,

p3 u3 x, t = −Jαt 4x
t2α

Γ 1+ 2α
+ x

t2α

Γ 1+ α 2 = −4x
t3α

Γ 1+ 3α
−
xΓ 1+ 2α

Γ 1+ α 2

t3α

Γ 1+ 3α
,

So, the solution to Eq. (5.25), as p 1, may be obtained as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t +u2 x, t +

= −x−x
tα

Γ 1+ α
−2x

t2α

Γ 1+ 2α
−4x

t3α

Γ 1+ 3α
−
xΓ 1+ 2α

Γ 1+ α 2

t3α

Γ 1+ 3α
− ,

5 32

Particularly at α = 1, Eq. (5.32) reduces to a closed-form solution u x, t =
x

t− 1
, which is same as the solution of

Wazwaz (2007). Figure 5.6 shows the comparison plots of the exact solution with the present solution by considering
the increasing number of terms in the solution. Figures 5.7–5.10 give the third-order approximate solution plots of Exam-
ple 5.2 for various α values.
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6

Homotopy Perturbation Transform Method

6.1 Introduction

In Chapter 5, we have already discussed the homotopy perturbationmethod (HPM), which is a semi-analytical approach for
solving linear and nonlinear ordinary/partial/fractional differential equations. In this chapter, we will discuss about the
hybrid methods, which are the coupling of HPM with various transform methods, viz. Laplace transform (LT), Sumudu
transform (ST), Elzaki transform (ET), and Aboodh transform (AT). As said earlier, HPM with the combination of these
transform methods is called as homotopy perturbation transform method (HPTM) (Singh and Kumar 2011, 2012; Elzaki
and Biazar 2013; Mahdy et al. 2015; Mohand and Mahgoub 2016; Sedeeg 2016; Olubanwo et al. 2019). Nowadays, these
methods, namely homotopy perturbation Laplace transformmethod (HPLTM), homotopy perturbation Sumudu transform
method (HPSTM), homotopy perturbation Elzaki transform method (HPETM), and homotopy perturbation Aboodh trans-
form method (HPATM), are getting popular recently. Although these four transform methods are effective methods for
solving fractional differential equations, but these methods sometimes fail to address nonlinear terms arising from the
fractional differential equations. These difficulties may be overcome by coupling these transforms with that of HPM. In
the subsequent sections, the theories behind the four transform methods with respect to fractional order are given.
Then the systematic study of the earlier-mentioned four hybrid methods along with two problems for each of the methods
is addressed.

6.2 Transform Methods for the Caputo Sense Derivatives

Definition 6.1 The LT of the Caputo fractional derivative is defined as (Baleanu and Jassim 2019):

L Dnα
t u x, t = snαL u x, t −

n− 1

k = 0

s nα− k− 1 u k x, 0 , n− 1 < nα ≤ 1,n N 6 1

Definition 6.2 The ST of the Caputo fractional derivative is defined as (Jena and Chakraverty 2019):

S Dnα
t u x, t = s− nαS u x, t −

n− 1

k = 0

s− nα + ku k x, 0 , n− 1 < nα ≤ 1,n N 6 2

Definition 6.3 The ET of the Caputo fractional derivative is defined as (Elzaki and Biazar 2013; Jena and Chakrav-
erty 2019):

E Dnα
t u x, t =

E u x, t
snα

−
n− 1

k = 0

sk− nα + 2u k x, 0 , n− 1 < nα ≤ n,n N 6 3

Definition 6.4 The AT of the Caputo fractional derivative is defined as (Aboodh 2013; Aboodh et al. 2017):

A Dnα
t u x, t = snαA u x, t −

n− 1

k = 0

s− k + nα− 2u k x, 0 , n− 1 < nα ≤ n,n N 6 4
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The aforementioned Table 6.1 shows the transforms of some standard functions with respect to the aforementioned four
transform methods and their definitions.
Following section deals with the systematic study of four hybrid methods, namely HPLTM, HPSTM, HPETM, and

HPATM, one after another.

6.3 Homotopy Perturbation Laplace Transform Method (HPLTM)

In order to clarify the basic idea of HPLTM, the fractional-order nonlinear nonhomogeneous partial differential equation
with initial conditions (ICs) is considered as follows:

Dnα
t u x, t + Ru x, t + Nu x, t = f x, t , n− 1 < nα ≤ n 6 5

subject to ICs:

u k x, 0 = gk x , k = 0, 1,…,n− 1 6 6

where Dnα
t =

∂nα

∂tnα
is the differential operator, Dnα

t u x, t is the derivative of u(x, t) in the Caputo sense, R, N are the linear

and nonlinear differential operators, and f (x, t) is the source term. The HPLTM approach involves mainly two stages. In
the first stage, LT is taken on both sides of Eq. (6.5), and then in the second stage, HPM is applied where decomposition
of the nonlinear term is done using He’s polynomials. First, by operating LT on both sides of Eq. (6.5), we obtain

L Dnα
t u x, t = L f x, t − L Ru x, t − L Nu x, t 6 7

Using differentiation property (Eq. (6.1)) of LT, we obtain

snαL u x, t −
n− 1

k = 0

snα− k− 1u k x, 0 = L f x, t − L Ru x, t − L Nu x, t 6 8

L u x, t =
1
snα

n− 1

k = 0

snα− k− 1u k x, 0 +
1
snα

L f x, t −
1
snα

L Ru x, t −
1
snα

L Nu x, t 6 9

Table 6.1 Transforms of some essential functions.

Functions Laplace transform Sumudu transform Elzaki transform Aboodh transform

Definitions L f t = f s

=

∞

0

e− st f t dt

S g t = g s

=

∞

0

e− t f st dt

=
1
s
f

1
s

E h t = h s

= s

∞

0

ef t dt

= sf
1
s

A p t = p s

=
1
s

∞

0

e− st f t dt

=
1
s
f s

1 1
s

1 s2 1
s2

tα Γ 1 + α

sα + 1

sαΓ(1 + α) sα+ 2Γ(1 + α) Γ 1 + α

sα + 2

eat 1
s− a

1
1− as

s2

1− as

1
s 1− s

sin(at) a
s2 + a2

as
1 + a2s2

as3

1 + a2s2

a
s s2 + a2

cos(at) s
s2 + a2

1
1 + s2a2

s
1 + s2a2

1
s2 + a2
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Applying inverse LT on both sides of Eq. (6.9), we find

u x, t = F x, t − L− 1 1
snα

L Ru x, t − L− 1 1
snα

L Nu x, t 6 10

where F(x, t) represents the term coming from the IC and source term (first two terms on the right-hand side of Eq. (6.9)).
Next, to implement HPM, first, we need to consider the solution as in series form containing the embedding parameters

p [0, 1] as:

u x, t =
∞

n = 0

pnun x, t 6 11

and the nonlinear term may be decomposed by using He’s polynomials (Ghorbani 2009) as:

Nu x, t =
∞

n = 0

pnHn u 6 12

where Hn(u) denotes the He’s polynomials and which is defined as follows:

Hn u0, u1,…, un =
1
n

∂n

∂pn
N

∞

n = 0

pnun x, t
p = 0

, n = 0, 1, 2,… 6 13

One may go through the reference (Ghorbani 2009) for a detailed derivation of the Eq. (6.13). Substituting Eqs. (6.11) and
(6.12) into Eq. (6.10) and applying LT with HPM, one may get the following expression:

∞

n = 0

pnun x, t = F x, t − p L− 1 1
snα

L R
∞

n = 0

pnun x, t + L− 1 1
snα

L
∞

n = 0

pnHn u 6 14

By comparing the coefficients of the same powers of “p” on both sides of Eq. (6.14), we may have the following approx-
imations successively:

p0 u0 x, t = F x, t ,

p1 u1 x, t = − L− 1 1
snα

L Ru0 x, t −L− 1 1
snα

L H0 u ,

p2 u2 x, t = − L− 1 1
snα

L Ru1 x, t −L− 1 1
snα

L H1 u ,

p3 u3 x, t = − L− 1 1
snα

L Ru2 x, t −L− 1 1
snα

L H2 u ,

pn un x, t = − L− 1 1
snα

L Run− 1 x, t −L− 1 1
snα

L Hn− 1 u

So, the solution of Eq. (6.5) may be obtained as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t + 6 15

6.4 Homotopy Perturbation Sumudu Transform Method (HPSTM)

Similar to the aforementioned procedure, applying ST on both sides of the Eq. (6.5), we have

S Dnα
t u x, t = S f x, t − S Ru x, t − S Nu x, t 6 16

Using differentiation property of (Eq. 6.2) for ST in Eq. (6.16), we obtain
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s− nαS u x, t −
n− 1

k = 0

s− nα + ku k x, 0 = S f x, t − S Ru x, t − S Nu x, t 6 17

S u x, t = snα
n− 1

k = 0

s− nα + ku k x, 0 + snαS f x, t − snαS Ru x, t − snαS Nu x, t 6 18

Applying inverse ST on both sides of Eq. (6.18), we find

u x, t = F x, t − S− 1 snαS Ru x, t − S− 1 snαS Nu x, t 6 19

Onemay see Jena and Chakraverty (2019) for a detailed description of this method. Substituting Eqs. (6.11) and (6.12) into
Eq. (6.19) and applying ST with HPM, we may have the following expression:

∞

n = 0

pnun x, t = F x, t − p S− 1 snαS R
∞

n = 0

pnun x, t + S− 1 snαS
∞

n = 0

pnHn u 6 20

By comparing the coefficients of like powers of “p” on both sides of Eq. (6.20), we may have the following approximations
successively:

p0 u0 x, t = F x, t ,

p1 u1 x, t = − S− 1 snαS Ru0 x, t − S− 1 snαS H0 u ,

p2 u2 x, t = − S− 1 snαS Ru1 x, t − S− 1 snαS H1 u ,

p3 u3 x, t = − S− 1 snαS Ru2 x, t − S− 1 snαS H2 u ,

pn un x, t = − S− 1 snαS Run− 1 x, t − S− 1 snαS Hn− 1 u ,

So, the solution of Eq. (6.5) may be obtained as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t + 6 21

6.5 Homotopy Perturbation Elzaki Transform Method (HPETM)

Applying ET on both sides of the Eq. (6.5), we obtain

E Dnα
t u x, t = E f x, t −E Ru x, t −E Nu x, t 6 22

Using differentiation property (Eq. (6.3)) of ET, we have

s− nαE u x, t −
n− 1

k = 0

sk− nα + 2u k x, 0 = E f x, t −E Ru x, t −E Nu x, t 6 23

E u x, t = snα
n− 1

k = 0

sk− nα + 2u k x, 0 + snαE f x, t − snαE Ru x, t − snαE Nu x, t 6 24

Inverse ET on both sides of Eq. (6.24) reduces to the following equation:

u x, t = F x, t −E− 1 snαE Ru x, t −E− 1 snαE Nu x, t 6 25

Interested researchers may see Jena and Chakraverty (2019) for a detailed description and difference between LT and ET.
By plugging Eqs. (6.11) and (6.12) into Eq. (6.25) and operating ET coupled with HPM, we have the expression as follows:

∞

n = 0

pnun x, t = F x, t − p E− 1 snαE R
∞

n = 0

pnun x, t + E− 1 snαE
∞

n = 0

pnHn u 6 26
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Comparing the coefficients of equal powers of “p” on both sides of Eq. (6.26), we have the following approximations
successively:

p0 u0 x, t = F x, t ,

p1 u1 x, t = −E− 1 snαE Ru0 x, t −E− 1 snαE H0 u ,

p2 u2 x, t = −E− 1 snαE Ru1 x, t −E− 1 snαE H1 u ,

p3 u3 x, t = −E− 1 snαE Ru2 x, t −E− 1 snαE H2 u ,

pn un x, t = −E− 1 snαE Run− 1 x, t −E− 1 snαE Hn− 1 u ,

So, the solution of Eq. (6.5) may be written as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t + 6 27

6.6 Homotopy Perturbation Aboodh Transform Method (HPATM)

Applying AT on both sides of Eq. (6.5) reduces to

A Dnα
t u x, t = A f x, t −A Ru x, t −A Nu x, t 6 28

Further, using Eq. (6.4), Eq. (6.28) reduces to the following expression:

snαA u x, t −
n− 1

k = 0

s− k + nα− 2u k x, 0 = A f x, t −A Ru x, t −A Nu x, t 6 29

A u x, t = s− nα
n− 1

k = 0

s− k + nα− 2u k x, 0 + s−nαA f x, t − s− nαA Ru x, t − s−nαA Nu x, t 6 30

Applying inverse AT on both sides of Eq. (6.30), we get

u x, t = F x, t −A− 1 s− nαA Ru x, t −A− 1 s− nαA Nu x, t 6 31

A detailed description of this transform may be found in Aboodh (2013), Aboodh et al. (2017), and Cherif and Ziane
(2018). Putting Eqs. (6.11) and (6.12) into Eq. (6.31) and operating AT in addition to HPM, we get

∞

n = 0

pnun x, t = F x, t − p A− 1 s− nαA R
∞

n = 0

pnun x, t + A− 1 s− nαA
∞

n = 0

pnHn u 6 32

Comparing the coefficients of the same powers of “p” on both sides of Eq. (6.32), we have the successive approxima-
tions as:

p0 u0 x, t = F x, t ,

p1 u1 x, t = −A− 1 s− nαA Ru0 x, t −A− 1 s− nαA H0 u ,

p2 u2 x, t = −A− 1 s− nαA Ru1 x, t −A− 1 s− nαA H1 u ,

p3 u3 x, t = −A− 1 s− nαA Ru2 x, t −A− 1 s− nαA H2 u ,

pn un x, t = −A− 1 s− nαA Run− 1 x, t −A− 1 s− nαA Hn− 1 u ,
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So, the solution of Eq. (6.5) may be written as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t + 6 33

Next, we solve two test problems to demonstrate the present methods.

6.7 Numerical Examples

6.7.1 Implementation of HPLTM

Example 6.1 Let us consider the one-dimensional heat-like model (Özis and Agırseven 2008; Sadighi et al. 2008) as:

Dα
t u x, t =

1
2
x2uxx x, t , 0 < x < 1, t > 0, 0 < α ≤ 1, 6 34

subject to the boundary conditions (BCs):

u 0, t = 0, u 1, t = et , 6 35

and IC:

u x, 0 = x2 6 36

Solution

Applying LT on both sides of Eq. (6.34) with IC and BCs, we have

sαL u x, t − sα− 1u x, 0 =
1
2
L x2uxx 6 37

L u x, t =
s− α

2
L x2uxx +

u x, 0
s

6 38

L u x, t =
s− α

2
L x2uxx +

x2

s
6 39

Taking inverse LT on both sides of Eq. (6.39) gives

u x, t = L− 1 s− α

2
L x2uxx + x2 6 40

Using HPM, we have

∞

n = 0

pnun x, t = x2 + p L− 1 s− α

2
L x2

∞

n = 0

pnun x, t xx 6 41

Comparing the coefficients of equal powers of p on both sides of Eq. (6.41), we obtain
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p0 u0 x, t = x2,

p1 u1 x, t = L− 1 s− α

2
L x2u0xx

= L− 1 s− α

2
L x2

∂2

∂x2
u0

= L− 1 s− α

2
L 2x2

= L− 1 x2

sα + 1
= x2

tα

Γ 1 + α
,

p2 u2 x, t = L− 1 s− α

2
L x2u1xx

= L− 1 s− α

2
L x2

∂2

∂x2
u1

= L− 1 s− α

2
L

2tα

Γ 1 + α
x2

= L− 1 x2

s2α + 1
= x2

t2α

Γ 1 + 2α
,

p3 u3 x, t = L− 1 s− α

2
L x2u2xx

= x2
t3α

Γ 1 + 3α
,

So, the solution of the fractional heat-like Eq. (6.34), as p 1, may be obtained as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t +

= x2 + x2
tα

Γ 1 + α
+ x2

t2α

Γ 1 + 2α
+ x2

t3α

Γ 1 + 3α
+ ,

= x2 1 +
tα

Γ 1 + α
+

t2α

Γ 1 + 2α
+

t3α

Γ 1 + 3α
+ = x2E tα ,

6 42

where E(tα) is called the Mittag-Leffer function.
In particular, at α = 1, Eq. (6.42) reduces to u(x, t) = x2et, which is same as the solution of Sadighi et al. (2008).

Example 6.2 Consider the following nonlinear advection equation (Wazwaz 2007):

∂αu
∂tα

+ u
∂u
∂x

= 0, 0 < α ≤ 1, 6 43

with IC

u x, 0 = − x 6 44

Solution

Applying LT on both sides of Eq. (6.43) with IC, we have

sαL u x, t − sα− 1u x, 0 = −L uux 6 45

L u x, t = − s− αL uux +
u x, 0

s
6 46

L u x, t = − s− αL uux −
x
s

6 47
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operating inverse LT on both sides of Eq. (6.47) gives

u x, t = − L− 1 s− αL uux − x 6 48

By HPM, we have

∞

n = 0

pnun x, t = − x− p L− 1 s− αL
∞

n = 0

pnHn u 6 49

Some of He’s polynomials Hn(u) (Khan and Wu 2011) for the term uux are

H0 u = u0
∂

∂x
u0,

H1 u = u0
∂

∂x
u1 + u1

∂

∂x
u0,

H2 u = u0
∂

∂x
u2 + u1

∂

∂x
u1 + u2

∂

∂x
u0,

6 50

Comparing the coefficients of like powers of p on both sides of Eq. (6.49), we obtain

p0 u0 x, t = − x,

p1 u1 x, t = −L− 1 s− αL H0 u

= − L− 1 s− αL u0
∂

∂x
u0

= −L− 1 s− αL x

= − L− 1 x
sα + 1

= − x
tα

Γ 1 + α
,

p2 u2 x, t = −L− 1 s− αL H1 u

= −L− 1 s− αL u0
∂

∂x
u1 + u1

∂

∂x
u0

= −L− 1 s− αL 2x
tα

Γ 1 + α

= −L− 1 2x
s2α + 1

= − 2x
t2α

Γ 1 + 2α
,

p3 u3 x, t = −L− 1 s− αL H2 u

= −L− 1 s− αL u0
∂

∂x
u2 + u1

∂

∂x
u1 + u2

∂

∂x
u0

= −L− 1 s− αL 4x
t2α

Γ 1 + 2α
+ x

t2α

Γ 1 + α 2

= −L− 1 4x
s3α + 1

+
x Γ 1 + 2α

Γ 1 + α 2s3α + 1
,

= − 4x
t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α

So, the solution to Eq. (6.43), as p 1, may be obtained as:

u x, t = lim
n ∞

un x, t = u0 x, t + u1 x, t + u2 x, t +

= − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
−

6 51

Particularly at α = 1, Eq. (6.51) reduces to closed-form solution u x, t =
x

t− 1
, which is same as the solution of Waz-

waz (2007).
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6.7.2 Implementation of HPSTM

Applying ST on both sides of Eq. (6.34) with Eqs. (6.35) and (6.36), we obtain

s− αS u x, t − s− αu x, 0 =
1
2
S x2uxx 6 52

S u x, t =
sα

2
S x2uxx + u x, 0 6 53

S u x, t =
sα

2
S x2uxx + x2 6 54

Taking inverse ST on both sides of Eq. (6.54) gives

u x, t = S− 1 sα

2
S x2uxx + x2 6 55

Applying HPM, we have

∞

n = 0

pnun x, t = x2 + p S− 1 sα

2
S x2

∞

n = 0

pnun x, t xx 6 56

Comparing the coefficients of equal powers of p on both sides of Eq. (6.56), we get

p0 u0 x, t = x2,

p1 u1 x, t = S− 1 sα

2
S x2u0xx

= S− 1 sα

2
S x2

∂2

∂x2
u0

= S− 1 sα

2
S 2x2

= S− 1 x2sα = x2
tα

Γ 1 + α
,

p2 u2 x, t = S− 1 sα

2
S x2u1xx

= S− 1 sα

2
S x2

∂2

∂x2
u1

= S− 1 sα

2
S

2tα

Γ 1 + α
x2

= S− 1 x2s2α = x2
t2α

Γ 1 + 2α
,

p3 u3 x, t = S− 1 sα

2
S x2u2xx

= x2
t3α

Γ 1 + 3α
,

So, the solution of the fractional heat-like Eq. (6.34), as p 1, may be obtained as:

u x, t = x2 + x2
tα

Γ 1 + α
+ x2

t2α

Γ 1 + 2α
+ x2

t3α

Γ 1 + 3α
+ = x2E tα 6 57

In particular, at α = 1, Eq. (6.57) reduces to u(x, t) = x2et, which is same as the solution of Sadighi et al. (2008).
Further, operating ST on both sides of Eq. (6.43) with IC, we have

s− αS u x, t − s− αu x, 0 = − S uux 6 58
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S u x, t = − sαS uux +
u x, 0
sα

6 59

S u x, t = − sαS uux −
x
sα

6 60

Operating inverse ST on both sides of Eq. (6.60) gives

u x, t = − S− 1 sαS uux − x 6 61

By HPM, we have

∞

n = 0

pnun x, t = − x− p S− 1 sαS
∞

n = 0

pnHn u 6 62

Using Eq. (6.50) and comparing the coefficients of like powers of p on both sides of Eq. (6.62), we obtain

p0 u0 x, t = − x,

p1 u1 x, t = − S− 1 sαS H0 u

= − S− 1 sαS u0
∂

∂x
u0

= − S− 1 sαS x

= − S− 1 xsα = − x
tα

Γ 1 + α
,

p2 u2 x, t = − S− 1 sαS H1 u

= − S− 1 sαS u0
∂

∂x
u1 + u1

∂

∂x
u0

= − S− 1 sαS 2x
tα

Γ 1 + α

= − S− 1 2xs2α = − 2x
t2α

Γ 1 + 2α
,

p3 u3 x, t = − S− 1 sαS H2 u

= − S− 1 sαS u0
∂

∂x
u2 + u1

∂

∂x
u1 + u2

∂

∂x
u0

= − S− 1 sαS 4x
t2α

Γ 1 + 2α
+ x

t2α

Γ 1 + α 2

= − S− 1 4xs3α +
x Γ 1 + 2α s3α

Γ 1 + α 2 ,

= − 4x
t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α

So, the solution to Eq. (6.43) may be obtained as:

u x, t = = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
− , 6 63

which is same as the solution of Wazwaz (2007) at α = 1.

6.7.3 Implementation of HPETM

Now, taking ET on both sides of Eq. (6.34) with IC and BCs, we get
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s− αE u x, t − s− α + 2u x, 0 =
1
2
E x2uxx 6 64

E u x, t = s2u x, 0 +
sα

2
E x2uxx 6 65

E u x, t = s2x2 +
sα

2
E x2uxx 6 66

Inverse ET on both sides of Eq. (6.66) gives

u x, t = x2 + E− 1 sα

2
E x2uxx 6 67

Through HPM, we have

∞

n = 0

pnun x, t = x2 + p E− 1 sα

2
E x2

∞

n = 0

pnun x, t xx 6 68

Comparing the coefficients of equal powers of p on both sides of Eq. (6.68), we obtain

p0 u0 x, t = x2,

p1 u1 x, t = E− 1 sα

2
E x2u0xx

= E− 1 sα

2
E x2

∂2

∂x2
u0

= E− 1 sα

2
E 2x2

= E− 1 x2sα = x2
tα

Γ 1 + α
,

p2 u2 x, t = E− 1 sα

2
E x2u1xx

= E− 1 sα

2
E x2

∂2

∂x2
u1

= E− 1 sα

2
E

2tα

Γ 1 + α
x2

= E− 1 x2s2α = x2
t2α

Γ 1 + 2α
,

p3 u3 x, t = S− 1 sα

2
E x2u2xx

= x2
t3α

Γ 1 + 3α
,

So, the solution of the Eq. (6.34) may be obtained as:

u x, t = x2 + x2
tα

Γ 1 + α
+ x2

t2α

Γ 1 + 2α
+ x2

t3α

Γ 1 + 3α
+ 6 69

At α = 1, Eq. (6.69) is same as the solution of Sadighi et al. (2008).
Again by operating ET on both sides of Eq. (6.43) with IC, we have

s− αE u x, t − s− α + 2u x, 0 = −E uux 6 70

E u x, t = − sαE uux + s2u x, 0 6 71

E u x, t = − sαE uux − xs2 6 72
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By inverse ET on both sides of Eq. (6.72), we have

u x, t = −E− 1 sαE uux − x 6 73

By HPM, we have

∞

n = 0

pnun x, t = − x− p E− 1 sαE
∞

n = 0

pnHn u 6 74

Using Eq. (6.50) and comparing the coefficients of like powers of p on both sides of Eq. (6.74), we obtain

p0 u0 x, t = − x,

p1 u1 x, t = −E− 1 sαE H0 u

= −E− 1 sαE u0
∂

∂x
u0

= −E− 1 sαE x

= −E− 1 xsα + 2 = − x
tα

Γ 1 + α
,

p2 u2 x, t = −E− 1 sαE H1 u

= −E− 1 sαE u0
∂

∂x
u1 + u1

∂

∂x
u0

= −E− 1 sαE 2x
tα

Γ 1 + α

= −E− 1 2xs2α + 2 = − 2x
t2α

Γ 1 + 2α
,

p3 u3 x, t = −E− 1 sαE H2 u

= −E− 1 sαE u0
∂

∂x
u2 + u1

∂

∂x
u1 + u2

∂

∂x
u0

= −E− 1 sαE 4x
t2α

Γ 1 + 2α
+ x

t2α

Γ 1 + α 2

= −E− 1 4xs3α + 2 +
x Γ 1 + 2α s3α + 2

Γ 1 + α 2 ,

= − 4x
t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α

So, the solution to Eq. (6.43) may be written as:

u x, t = = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
− , 6 75

which is same as the solution of Wazwaz (2007) at α = 1.

6.7.4 Implementation of HPATM

Now, taking AT on both sides of Eq. (6.34) with IC and BCs, we have

sαA u x, t − sα− 2u x, 0 =
1
2
A x2uxx 6 76

A u x, t =
u x, 0
s2

+
s− α

2
A x2uxx 6 77
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A u x, t =
x2

s2
+

s− α

2
A x2uxx 6 78

Inverse AT on both sides of Eq. (6.78) reduces to

u x, t = x2 + A− 1 s− α

2
A x2uxx 6 79

Using HPM, we have

∞

n = 0

pnun x, t = x2 + p A− 1 s− α

2
A x2

∞

n = 0

pnun x, t xx 6 80

Comparing the coefficients of equal powers of p on both sides of Eq. (6.80), we obtain

p0 u0 x, t = x2,

p1 u1 x, t = A− 1 s− α

2
A x2u0xx

= A− 1 s− α

2
A x2

∂2

∂x2
u0

= A− 1 s− α

2
A 2x2

= A− 1 x2s− α− 2 = x2
tα

Γ 1 + α
,

p2 u2 x, t = A− 1 s− α

2
A x2u1xx

= A− 1 s− α

2
A x2

∂2

∂x2
u1

= A− 1 s− α

2
A

2tα

Γ 1 + α
x2

= A− 1 x2s− 2α− 2 = x2
t2α

Γ 1 + 2α
,

p3 u3 x, t = A− 1 s− α

2
A x2u2xx

= x2
t3α

Γ 1 + 3α
,

So, the solution of the Eq. (6.34) may be obtained as:

u x, t = x2 + x2
tα

Γ 1 + α
+ x2

t2α

Γ 1 + 2α
+ x2

t3α

Γ 1 + 3α
+ = x2E tα 6 81

In particular, at α = 1, Eq. (6.81) reduces to u(x, t) = x2et which is same as the solution of Sadighi et al. (2008).
Again by operating AT on both sides of Eq. (6.43) with IC, we have

sαA u x, t − sα− 2u x, 0 = −A uux 6 82

A u x, t = − s− αA uux +
u x, 0
s2

6 83

A u x, t = − s− αA uux −
x
s2

6 84

By inverse AT on both sides of Eq. (6.84), we have

u x, t = −A− 1 s− αA uux − x 6 85
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By HPM, we have

∞

n = 0

pnun x, t = − x− p A− 1 s− αA
∞

n = 0

pnHn u 6 86

Using Eq. (6.50) and comparing the coefficients of like powers of p on both sides of Eq. (6.86), we obtain

p0 u0 x, t = − x,

p1 u1 x, t = −A− 1 s− αA H0 u

= −A− 1 s− αA u0
∂

∂x
u0

= −A− 1 s− αA x

= −A− 1 xs− α− 2 = − x
tα

Γ 1 + α
,

p2 u2 x, t = −A− 1 s− αA H1 u

= −A− 1 s− αA u0
∂

∂x
u1 + u1

∂

∂x
u0

= −A− 1 s− αA 2x
tα

Γ 1 + α

= −A− 1 2xs− 2α− 2 = − 2x
t2α

Γ 1 + 2α
,

p3 u3 x, t = −A− 1 s− αA H2 u

= −A− 1 s− αA u0
∂

∂x
u2 + u1

∂

∂x
u1 + u2

∂

∂x
u0

= −A− 1 s− αA 4x
t2α

Γ 1 + 2α
+ x

t2α

Γ 1 + α 2

= −A− 1 4xs− 3α− 2 +
x Γ 1 + 2α s− 3α− 2

Γ 1 + α 2 ,

= − 4x
t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α

So, the solution to Eq. (6.43) may be written as:

u x, t = = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
− 6 87

Particularly at α = 1, Eq. (6.87) reduces to closed-form solution u x, t =
x

t− 1
, which is same as the solution of Waz-

waz (2007).
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7

Fractional Differential Transform Method

7.1 Introduction

In Chapter 6, we have already discussed the hybrid method, which combines homotopy perturbation method (HPM) and
various transform methods. DTM is a semi-analytical method based on the Taylor series expansion, which constructs an
analytical solution in the form of a polynomial. Zhou (1986) first proposed the differential transform method (DTM) and
initially applied it to initial value problems used in electrical circuits. Jang et al. (2001) claimed that DTM is an iterative
process to obtain the solution of differential equations in the Taylor series form. Taylor’s standard high-order series method
involves symbolic computation. Although the Taylor series method needs more computational work for higher orders, this
method reduces the computational domain size and applies to several problems (Fatma 2004; Hassan 2004; Erturk and
Momani 2008). In this chapter, we use DTM with a combination of Caputo fractional derivatives, which is called as frac-
tional differential transform method (FDTM). The present method is based on the combination of the classical one-
dimensional FDTM and generalized Taylor’s formula. The concerned authors may follow (Arikoglu and Ozkol 2006,
2007; Nazari and Shahmorad 2010; Methi 2016) for more details.

7.2 Fractional Differential Transform Method

There are various ways to generalize the notion of differentiation of fractional orders. The fractional differentiation in
Riemann–Liouville sense is described as (Arikoglu and Ozkol 2007):

Dβ
0 f x =

1
Γ n− β

dn

dxn

x

0

x− t n− β− 1f t dt , 7 1

for n− 1 < β ≤ n, n Z+ and x> 0. Let us expand the analytical and continuous function f (x) in terms of fractional power
series as:

f x =
∞

k = 0

F k x− x0
k α, 7 2

where α is the order of fraction and F(k) is the fractional differential transform of f (x). Regarding practical applications in
different branches of science, fractional initial conditions (ICs) are often not available, and their physical meaning may not
be obvious. Therefore, to deal with integer-ordered ICs in Caputo sense (Caputo 1967), the definition in Eq. (7.1) should be
modified as follows (Arikoglu and Ozkol 2007):

Dβ
0 f x −

n− 1

k− 0

1
k

x− x0
kf k 0 =

1
Γ n− β

dn

dxn

x

0

f t −
n− 1

k− 0

1
k

t− x0
kf k 0

x− t β− n + 1 dt 7 3
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Since the ICs are extended to integer-order derivatives, so the transformation of the ICs is defined as:

F k =

1
k α

dk αf x

dxk α
x = x0

, If
k
α

Z + ,

0, If
k
α

Z + ,

for k = 0, 1, 2,…, nα− 1 7 4

where n is the order of the fractional differential equation (FDE). The following theorems are obtained using
Eqs. (7.1) and (7.2).

Theorem 7.1 (Arikoglu and Ozkol 2007)

a) If f (x) = g(x) ± h(x) then F(k) = G(k) ±H(k).

b) If f x = g x h x , then F k =
l

k = 0
G k H l− k

c) If f (x) = g1(x)g2(x)g3(x)…gn− 1(x)gn(x), then

F k =
k

kn− 1 = 0

kn− 1

kn− 2 = 0

…
k4

k3 = 0

k3

k2 = 0

k2

k1 = 0

G k1 G k2 − k1 G k3 − k2 …G kn− 1 − kn− 2 G k− kn− 1

d) If f x = x− x0
n, then F k = δ k− nα where δ k =

1 if k = 0

0 if k 0

Proof: One may see Arikoglu and Ozkol (2007) for the explanations of all the aforementioned results.

Theorem 7.2 (Arikoglu and Ozkol 2007)

If f x = Dβ
x0 g x , then F k =

Γ 1 + β + k
α

Γ 1 +
k
α

G k + αβ ,

where α is the order of the FDE.

Proof: One may refer to Arikoglu and Ozkol (2007) for the explanation.

Theorem 7.3 (Arikoglu and Ozkol 2007)

If f x =
dβ1

dxβ1
g1 x

dβ2

dxβ2
g2 x … dβn− 1

dxβn− 1
gn− 1 x

dβn

dxβn
gn x , then

F k =
k

kn− 1 = 0

kn− 1

kn− 2 = 0

k4

k3 = 0

k3

k2 = 0

k2

k1 = 0

Γ 1 + β1 +
k1
α

Γ 1 +
k1
α

Γ 1 + β2 +
k2 − k1

α

Γ 1 +
k2 − k1

α

Γ 1 + βn− 1 +
kn− 1 − kn− 2

α

Γ 1 +
kn− 1 − kn− 2

α

Γ 1 + βn +
k− kn− 1

α

Γ 1 +
k− kn− 1

α

G1 k1 + αβ1 G2 k2 − k1 + αβ2 …Gn− 1 kn− 1 − kn− 2 + αβn− 1 Gn k− kn− 1 + αβn ,

where αβi Z+ for i = 1, 2, 3, …, n.

Proof: The proof of this result can be seen in Arikoglu and Ozkol (2007).

Theorem 7.4 (Arikoglu and Ozkol 2007)

a) If f x =
x

x0

g t dt, then F k =
αG k− α

k
, for k ≥ α

b) If f x = g x
x

x0

h t dt, then F k = α
k

k1 = α

H k1 − α

k1
G k− k1 , for k ≥ α
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From the aforementioned theorems, one may see that DTM is a subset of FDTM. Eq. (7.2) is the classical form of
expanding an analytical function in the Taylor series in this particular case.

7.3 Illustrative Examples

In order to demonstrate the effectiveness of the FDTM, we use the present method to solve a linear fractional one-
dimensional heat-like problem in Example 7.1 and a nonlinear advection equation in Example 7.2.

Example 7.1 Let us consider the one-dimensional heat-like model (Özis and Agırseven 2008; Sadighi et al. 2008) as:

Dβ
t u x, t =

1
2
x2uxx x, t , 0 < x < 1, t > 0, 0 < β ≤ 1, 7 5

with the boundary conditions (BCs):

u 0, t = 0, u 1, t = et, 7 6

and IC:

u x, 0 = x2 7 7

Solution

Since the value of β (0 < β ≤ 1) lies between 0 and 1. So, we have considered the value of α = 10 in order to get integer order
by multiplying 10 to β. The author may consider the order of the FDE as α = 20 and the result of the problem will be the
same, but it will take more computation as compared to the earlier one. Taking IC u(x, 0) = f (x) = x2 and using Theorem 7.2,
Eq. (7.5) reduces to the following expression:

Γ 1 + β + k 10
Γ 1 + k 10

U k + 10β =
1
2
x2

∂2

∂x2
U k , 7 8

and using Eq. (7.4), IC and BC are transformed to

U k =

1
k β

dk βf x

dxk β
x = 0

,
k
β

Z + ,

0,
k
β

Z + ,

for k = 0, 1, 2,…, 10β− 1 7 9

From Eq. (7.9), we obtain

k = 0
0
β
= 0 Z + , U 0 =

1
0

u x, 0 = x2,

k = 1
1
β

Z + , U 1 = 0,

k = β
β

β
= 1 Z + , U β =

1
1

d
dx

f x
x = 0

= 0,

k = 9β
9β
β

= 9 Z + , U 9β =
1
9

d9

dx9
f x

x = 0
= 0
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Using Eq. (7.8), the following results are obtained:

k = 0 U 10β =
1

Γ 1 + β

1
2
x2

∂2

∂x2
U 0 =

x2

Γ 1 + β
,

k = 1 U 10β + 1 =
Γ 1 +

1
10

Γ 1 + β +
1
10

1
2
x2

∂2

∂x2
U 1 = 0,

k = β U 11β =
Γ 1 +

β

10

Γ 1 + β +
β

10

1
2
x2

∂2

∂x2
U β = 0,

k = 10β U 20β =
Γ 1 + β

Γ 1 + 2β
1
2
x2

∂2

∂x2
U 10β =

x2

Γ 1 + 2β
,

k = 20β U 30β =
Γ 1 + 2β
Γ 1 + 3β

1
2
x2

∂2

∂x2
U 20β =

x2

Γ 1 + 3β
,

Now, applying inverse differential transform, we have

u x, t =
∞

k = 0

U k t
k
10 = x2 +

x2tβ

Γ 1 + β
+

x2t2β

Γ 1 + 2β
+

x2t3β

Γ 1 + 3β
+ …

= x2 1 +
tβ

Γ 1 + β
+

t2β

Γ 1 + 2β
+

t3β

Γ 1 + 3β
+ … = x2E tβ ,

7 10

where E(tβ) is called the Mittag-Leffler function, which is given in Chapter 1.
In particular, at β = 1, Eq. (7.10) reduces to u(x, t) = x2et, which is same as the solution of Sadighi et al. (2008). It is worth

mentioning that increasing the number of terms of the solution may lead to a better result, as shown in Figure 7.1.
Figures 7.1–7.5 depict the fourth-order approximate solution plots of Example 7.1 with different β values.
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Figure 7.1 Comparison plot of the present solution with the exact solution of Example 7.1 taking a different number of terms of
approximate solution.
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Figure 7.2 Fourth-order approximate solution plot of Example 7.1 at β = 1.
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Figure 7.3 Fourth-order approximate solution plot of Example 7.1 at β = 0.3.
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Figure 7.4 Fourth-order approximate solution plot of Example 7.1 at β = 0.5.
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Example 7.2 Consider the following nonlinear advection equation (Wazwaz 2007):

∂βu
∂tβ

+ u
∂u
∂x

= 0, 0 < β ≤ 1, 7 11

with IC:

u x, 0 = − x 7 12

Solution

By choosing α = 10, f(x) = − x and using Theorems 7.1 (b) and 7.2, Eq. (7.11) is transformed to

Γ 1 + β + k 10
Γ 1 + k 10

U k + 10β = −
k

l = 0

U l
∂

∂x
U k− l 7 13

As per Eq. (7.9), IC of Eq. (7.12) may be written as:

U 0 = − x,
U k = 0, k = 1, 2,…, β,…, 2β,…, 10β− 1

7 14

The following recurrence relations may be obtained from Eq. (7.13):

k = 0 U 10β =
− 1

Γ 1 + β
U 0

∂

∂x
U 0 =

− x
Γ 1 + β

, 7 15

U 10β + k = 0, for k = 1,…, β,…, 2β,…, 10β− 1 7 16

k = 10β U 20β =
−Γ 1 + β

Γ 1 + 2β

10β

l = 0

U l
∂

∂x
U 10β− l 7 17
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Figure 7.5 Fourth-order approximate solution plot of Example 7.1 at β = 0.7.
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Using Eqs. (7.14)–(7.16), Eq. (7.17) may be calculated as:

U 20β =
−Γ 1+β

Γ 1+2β
U 0

∂

∂x
U 10β +U 10β

∂

∂x
U 0 =

−2x
Γ 1+2β

7 18

Now,

U 20β + k = 0, k = 1,…, β,…, 2β,…, 10β− 1 7 19

Substituting k = 20β in Eq. (7.13), we have

U 30β =
−Γ 1 + 2β
Γ 1 + 3β

20β

l = 0

U l
∂

∂x
U 20β− l 7 20

Using Eqs. (7.14)–(7.19), Eq. (7.20) may be computed as:

U 30β =
−Γ 1 + 2β
Γ 1 + 3β

U 0
∂

∂x
U 20β + U 10β

∂

∂x
U 10β + U 20β

∂

∂x
U 0

=
− 4x

Γ 1 + 3β
−

x Γ 1 + 2β

Γ 1 + β 2Γ 1 + 3β
7 21

Applying inverse differential transformation, u(x, t) can be evaluated as:

u x, t =
∞

k = 0

U k tk 10 = − x +
− x

Γ 1 + β
tβ +

− 2x
Γ 1 + 2β

t2β

+
− 4x

Γ 1 + 3β
−

x Γ 1 + 2β

Γ 1 + β 2Γ 1 + 3β
t3β +

7 22

Particularly at β = 1, Eq. (7.22) reduces to a closed-form solution u x, t =
x

t− 1
, which is same as the solution of Wazwaz

(2007). In Figure 7.6, the exact solution is compared with the present solution by considering the increasing number of
terms. Plots of third-order approximate solution of Example 7.2 for various β values appear in Figures 7.7–7.10.
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Figure 7.6 Comparison plot of the present solution with the exact solution of Example 7.2 taking a different number of terms of
approximate solution.
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Figure 7.7 Third-order approximate solution plot of Example 7.2 at β = 1.
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Figure 7.8 Third-order approximate solution plot of Example 7.2 at β = 0.3.
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Figure 7.9 Third-order approximate solution plot of Example 7.2 at β = 0.5.
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8

Fractional Reduced Differential Transform Method

8.1 Introduction

In Chapter 7, we have discussed the differential transform method (DTM), which was first proposed by Zhou (1986), and it
was used to solve linear and nonlinear initial value problems arising in electric circuit analysis. Later, DTMwas used to solve
partial differential equations. Another analytical version of DTM is the reduced differential transform method (RDTM).
Recently, the RDTM has been found to be effective and reliable for handling linear and nonlinear partial differential equa-
tions and integral equations (Abazari and Kılıçman 2013; Abazari and Soltanalizadeh, 2013; Saravanan and Magesh 2013).
Keskin and Oturanc (2010) applied this method to solve fractional differential equations with somemodifications. Later this
method was named as fractional reduced differential transformmethod (FRDTM). FRDTM has been successfully applied to
solve various types of fractional partial differential equations (see Jena et al. (2019a, 2019b) and Saravanan and Magesh
(2016)) and also higher-dimensional problems (Rawashdeh 2015). In Chapters 3 and 5, we have implemented HPM and
ADM, respectively, to solve some fractional-order differential equations. The significant disadvantages of these approaches
are that it requires complicated and plenty of calculations. In order to overcome such types of drawbacks, FRDTM has been
introduced. The FRDTM is a computationally efficient and implementable analytical technique and provides an approx-
imate analytical solution for both linear and nonlinear fractional differential equations. It does not use any discretization,
transformation, perturbation, or restrictive conditions. This method needs a lesser size of computations than HPM
and ADM.
First, we briefly describe the FRDTM in the following section.

8.2 Description of FRDTM

In order to understand the basic concept of FRDTM (Jena et al. 2019a, 2019b; Jafari et al. 2016), first, we recall and review
the local fractional Taylor’s theorems, and then, we extend it to FRDTM for fractional derivative.

Theorem 8.1 (Local fractional Taylor’s theorem)

Suppose that ζ(k+ 1)α Cα(a, b), for k = 0, 1, …, n and 0 < α≤ 1, then we have

ζ x =
∞

k = 0

ζ kα 0
x− x0

kα

Γ 1 + kα
, 8 1

where

a < x0 < x < b, x a, b and ζ k + 1 α x = Dα
xD

α
xD

α
x…Dα

x

k + 1 times

ζ x
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Definition 8.1 The fractional reduced differential transform ζk(x) of an analytic function ζ(x, t) is defined as the following
formula:

ζk x =
1

Γ 1 + αk
∂kεζ x, t

∂tkα
t = 0

where k = 0, 1,…,n, 8 2

Definition 8.2 The fractional inverse differential transform of ζk(x) is defined as follows:

ζ x, t =
∞

k = 0

ζk x tkα 8 3

Using Eqs. (8.2) and (8.3), the following theorems on FRDTM are deduced.

Theorem 8.2 Let ψ(x, t), ξ(x, t) and ζ(x, t) are three analytical functions such that ψ x, t = R− 1
D ψk x ,

ξ x, t = R− 1
D ξk x and ζ x, t = R− 1

D ζk x . Hence,

i) If ψ(x, t) = c1ξ(x, t) ± c2ζ(x, t), then ψk(x) = c1ξk(x) ± c2ζk(x), where c1 and c2 are constants.

ii) If ψ(x, t) = a ξ(x, t), then ψk(x) = a ξk(x).

iii) If ψ x, t = ξ x, t ζ x, t , then ψk x =
j

i = 0
ξi x ζj− i x =

j

i = 0
ζi x ξj− i x .

iv) If ψ x, t =
∂m

∂xm
ξ x, t , then ψk x =

∂m

∂xm
ξk x .

v) If ψ x, t =
∂nα

∂tnα
ξ x, t , then ψk x =

Γ 1 + k + n α

1 + kα
ξk + n x .

Here, R− 1
D denotes the inverse reduced differential transform operator.

Proof

i) From Eq. (8.2), we have

ψk x =
1

Γ 1+ αk
∂kαψ x, t

∂tkα
t=0

=
1

Γ 1+ αk
∂kα

∂tkα
c1ξ x, t ± c2ζ x, t

t=0

=
1

Γ 1+ αk
c1
∂kαξ x, t
∂tkα

± c2
∂kαζ x, t

∂tkα
t=0

= c1
1

Γ 1+ αk
∂kαξ x, t
∂tkα

t=0

± c2
1

Γ 1+ αk
∂kαζ x, t

∂tkα
t=0

,

ψk x = c1ξk x ± c2ζk x

8 4

ii) From Eq. (8.2), we have

ψk x =
1

Γ 1+ αk
∂kαψ x, t

∂tkα
t=0

=
1

Γ 1+ αk
∂kα

∂tkα
aξ x, t

t=0

= a
1

Γ 1+ αk
∂kαξ x, t
∂tkα

t=0

= aξk x

8 5
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iii) From Eq. (8.3), we obtain

ψ x, t =
∞

k=0

ξk x tkα
∞

k=0

ζk x tkα

= ξ0 x + ξ1 x tα + ξ2 x t2α+ ζ0 x + ζ1 x tα + ζ2 x t2α+

=
ξ0 x ζ0 x + ξ0 x ζ1 x + ξ1 x ζ0 x tα + ξ0 x ζ2 x + ξ1 x ζ1 x + ξ2 x ζ0 x t2α+

+ ξ0 x ζk x + ξ1 x ζk−1 x + + ξk−1 x ζ1 x + ξk x ζ0 x t2α

ψk x =
j

i=0

ξi x ζj− i x =
j

i=0

ζi x ξj− i x

8 6

iv) From Eq. (8.2), we have

ψk x =
1

Γ 1+ αk
∂kαψ x, t

∂tkα
t=0

=
1

Γ 1+ αk
∂kα

∂tkα
∂m

∂xm
ξ x, t

t=0

=
1

Γ 1+ αk
∂m

∂xm
∂kαξ x, t
∂tkα

t= t0

=
∂mξk x
∂xm

8 7

v) From Eq. (8.2), we have

ψk x =
1

Γ 1+ αk
∂kαψ x, t

∂tkα
t=0

=
1

Γ 1+ αk
∂kα

∂tkα
∂nα

∂tnα
ξ x, t

t=0

=
1

Γ 1+ αk
∂ k+ n α

∂t k+ n α
ξ x, t

t=0

ψk x =
Γ 1+ k+n α

1+ kα
ξk+ n x

8 8

Interested authors may see Jena et al. (2019a, 2019b) and Jafari et al. (2016) for further details about the FRDTM.

8.3 Numerical Examples

We apply the present method to solve the one-dimensional heat-like fractional model in Example 8.1 and the nonlinear
fractional advection equation in Example 8.2. It is worth mentioning that the FRDTM can also be used for handling linear
and nonlinear fractional ordinary and partial differential equations.

Example 8.1 Let us consider the one-dimensional heat-like model (Özis and Agırseven 2008; Sadighi et al. 2008) as:

Dα
t u x, t =

1
2
x2uxx x, t , 0 < x < 1, t > 0, 0 < α ≤ 1, 8 9

subject to the boundary conditions (BCs):
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u 0, t = 0, u 1, t = et , 8 10

and initial condition (IC):

u x, 0 = x2 8 11

Solution

By applying FRDTM to Eq. (8.9) and using Theorems 8.1 (iv) and (v), the following recurrence relation is obtained:

Γ 1 + k + 1 α

1 + kα
uk + 1 x =

1
2
x2

∂2

∂x2
uk x , 8 12

By using FRDTM to the IC of Eq. (8.11), we obtain

u0 x = x2 8 13

Using Eq. (8.13) into Eq. (8.12), the following values of uk(x) for k = 0, 1, 2, … are obtained successively:

k = 0 u1 x =
Γ 1

Γ 1 + α

1
2
x2

∂2

∂x2
u0 x =

1
Γ 1 + α

1
2
2x2 =

x2

Γ 1 + α
, 8 14

k = 1 u2 x =
Γ 1 + α

Γ 1 + 2α
1
2
x2

∂2

∂x2
u1 x =

Γ 1 + α

Γ 1 + 2α
1
2
x2

2
Γ 1 + α

=
x2

Γ 1 + 2α
, 8 15

k = 2 u3 x =
Γ 1 + 2α
Γ 1 + 3α

1
2
x2

∂2

∂x2
u2 x =

Γ 1 + 2α
Γ 1 + 3α

1
2
x2

2
Γ 1 + 2α

=
x2

Γ 1 + 3α
, 8 16

and so on. Similarly, the rest of the components of the iteration formula Eq. (8.12) can be obtained.
So, the solution of Eq. (8.9) may be written as:

u x, t =
∞

k=0

uk x tαk,

= u0 x + u1 x tα + u2 x t2α+ ,

= x2 +
x2tα

Γ 1+ α
+

x2t2α

Γ 1+ 2α
+

x2t3α

Γ 1+ 3α
+ = x2E tα ,

8 17

where E(tα) is called the Mittag-Leffler function. Equation (8.17) is same as the solution given in Özis and Agırseven (2008)
and Sadighi et al. (2008) at α = 1. The obtained solution is compared with the exact solution, which is shown in Figure 8.1.
Figures 8.2–8.5 depict the fourth-order approximate solution plots of Example 8.1 at various values of α.

Exact solution

u4(x, 0.9)

u3(x, 0.9)

u2(x, 0.9)

u1(x, 0.9)
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150

100
Solution

50

Figure 8.1 Comparison plot of the present solution with the exact solution of Example 8.1.
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Figure 8.2 Fourth-order approximate solution plot of Example 8.1 at α = 1.
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Figure 8.3 Fourth-order approximate solution plot of Example 8.1 at α = 0.25.
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Figure 8.4 Fourth-order approximate solution plot of Example 8.1 at α = 0.45.
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Example 8.2 Consider the following nonlinear advection equation (Wazwaz 2007):

∂αu
∂tα

+ u
∂u
∂x

= 0, 0 < α ≤ 1, 8 18

with an IC:

u x, 0 = − x 8 19

Solution

Using FRDTM on the aforementioned two equations, we obtained the following recurrence relation:

Γ 1 + k + 1 α

1 + kα
uk + 1 x = −

k

i = 0

ui x
∂

∂ x
uk− i x ,

u0 x = − x

8 20

On solving Eq. (8.20), we have

k=0 u1 x =
Γ 1

Γ 1+ α
−u0 x

∂

∂x
u0 x =

−1
Γ 1+ α

−x −1 =
−x

Γ 1+ α
, 8 21

k=1 u2 x =
−Γ 1+ α

Γ 1+ 2α
u0 x

∂

∂x
u1 x + u1 x

∂

∂x
u0 x

=
−Γ 1+ α

Γ 1+ 2α
−x

−1
Γ 1+ α

+
−x

Γ 1+ α
−1 =

−2x
Γ 1+ 2α

,

8 22

k=2 u3 x =
−Γ 1+ 2α
Γ 1+ 3α

u0
∂

∂x
u2 + u1

∂

∂x
u1 +u2

∂

∂x
u0

=
−Γ 1+ 2α
Γ 1+ 3α

−x
−2

Γ 1+ 2α
+

−x
Γ 1+ α

−1
Γ 1+ α

+
−2x

Γ 1+ 2α
−1

=
−Γ 1+ 2α
Γ 1+ 3α

4x
Γ 1+ 2α

+
x

Γ 1+ α 2 =
−4x

Γ 1+ 3α
+

−Γ 1+ 2α
Γ 1+ 3α

x

Γ 1+ α 2

8 23

and so on. Similarly, the rest of the components uk(x) for k = 3, 4, … can be calculated.
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Figure 8.5 Fourth-order approximate solution plot of Example 8.1 at α = 0.85.
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So, the solution of Eq. (8.18) may be written as:

u x, t =
∞

k=0

uk x tαk ,

=u0 x +u1 x tα + u2 x t2α+ ,

= −x+
−x

Γ 1+ α
tα +

−2x
Γ 1+ 2α

t2α +
−4x

Γ 1+ 3α
t3α +

−Γ 1+ 2α
Γ 1+ 3α

x

Γ 1+ α 2 t
3α+

8 24

In particular, at α = 1, Eq. (8.24) reduces to

u x, t = − x− xt− xt2 − xt3 − = − x 1 + t + t2 + t3 + =
x

t− 1
8 25

which is same as the solution of Wazwaz (2007). The exact solution is compared with the present solution in Figure 8.6 by
considering the increasing number of terms of solution. Figures 8.7–8.10 show the solution plots of the third-order approx-
imate solutions to Example 8.2 for various values α.
The test problems confirm that the FRDTM is an efficient method for solving linear/nonlinear fractional partial differ-

ential equations. The series usually converges with an increase in the number of terms, but one may not always expect the
compact form solution.
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Figure 8.7 Third-order approximate solution plot of Example 8.2 at α = 1.
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Figure 8.6 Comparison plot of the present solution with the exact solution of Example 8.2.
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Figure 8.10 Third-order approximate solution plot of Example 8.2 at α = 0.85.
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Figure 8.9 Third-order approximate solution plot of Example 8.2 at α = 0.45.
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Figure 8.8 Third-order approximate solution plot of Example 8.2 at α = 0.25.
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9

Variational Iterative Method

9.1 Introduction

In the previous chapters, we have discussed two semi-analytical approaches, such as Adomian decomposition method
(ADM) and homotopy perturbation method (HPM), to solve linear and nonlinear ordinary/partial/fractional differential
equations. In this chapter, we will discuss the variational iterative method (VIM). VIM was first proposed by Chinese math-
ematician He (1998) and He andWu (2007). He successfully used this technique for solving ordinary and partial differential
equations. Subsequently, several researchers used this method for solving linear, nonlinear, homogeneous, and inhomo-
geneous differential equations (Geng et al. 2009; Odibat and Momani 2009; Odibat 2010; Khana et al. 2011). The principal
benefit of this approach is its simplicity and ability to solve nonlinear equations. The approach is also valid in bounded and
unbounded domains. It is based on the Lagrange multiplier method initiated by Inokuti et al. (1978). This approach is a
modification of the general Lagrange multiplier approach to an iteration process, called functional correction (Momani
and Odibat 2007). A substantial number of nonlinear problems are solved effectively by various researchers, generally with
one or two iterations leading to good solutions. It is worth mentioning that almost all conventional perturbation methods
are based on the assumption of small parameters. These small parameters are so sensitive that a slight changemay influence
the result. The right choice of small parameters yields optimal performance. However, an inappropriate choice of small
parameters leads to poor, even significant effects. As such, no small parameter assumptions are made in this method, which
may be the main advantage.

9.2 Procedure for VIM

In order to understand the procedure of VIM, let us consider the time-fractional differential equation as (Odibat and
Momani 2009):

∂α

∂tα
u x, t = N x u x, t + q x, t , t > 0, x ℜ, 9 1

where N[x] is the differential operator in x, subject to initial and boundary conditions (BCs):

u x, 0 = f x , 0 < α ≤ 1,

u x, t 0 as x ∞ , t > 0, 9 2

and

u x, 0 = f x ,
∂

∂t
u x, 0 = g x , 1 < α ≤ 2,

u x, t 0 as x ∞ , t > 0, 9 3

101

Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications, First Edition.
Snehashish Chakraverty, Rajarama Mohan Jena, and Subrat Kumar Jena.
© 2023 John Wiley & Sons, Inc. Published 2023 by John Wiley & Sons, Inc.



where f (x), g (x), and q(x, t) are all continuous functions, and α,m− 1 < α≤m,m N is a parameter representing the order
of fractional derivatives defined in the Caputo sense. As per the principle of VIM, the correction functional for Eq. (9.1) may
be written as follows (Odibat and Momani 2009):

uk+1 x, t = uk x, t + Jβt λ
∂α

∂tα
uk x, t −N x uk x, t −q x, t ,

= uk x, t +
1

Γ β

t

0

t−τ β−1λ τ
∂α

∂tα
uk x,τ −N x uk x,τ −q x,τ dτ,

9 4

where Jβt is the Reimann–Liouville integral operator of order β = α− α , α =max {m Z |m≤ α} which may be written as
β = α−m+ 1 and λ is a general Lagrange multiplier that can be optimally defined through variational theory (Inokuti et al.
1978). Some approximations must be made to determine the Lagrange multiplier approximately. The functional correction
Eq. (9.4) may be presented as (Odibat and Momani 2009):

uk + 1 x, t = uk x, t +

t

0

λ τ
∂m

∂tm
uk x, τ −N x uk x, τ − q x, τ dτ 9 5

Here, we implement the restricted variations to the nonlinear term N[x] u, in which the multiplier can be calculated eas-
ily. Considering the aforementioned functional stationery, observing that δ uk = 0, we obtain

δ uk + 1 x, t = δ uk x, t + δ

t

0

λ τ
∂m

∂tm
uk x, τ − q x, τ dτ 9 6

From Eq. (9.6), we have the following Lagrange multipliers:

λ = − 1, form = 1, 9 7

λ = τ− t, form = 2 9 8

Hence, for m = 1 (0 < α ≤ 1), we substitute λ = − 1 in Eq. (9.4) to achieve the following iteration expression:

uk + 1 x, t = uk x, t − Jαt
∂α

∂tα
uk x, t −N x uk x, t − q x, τ 9 9

For m = 2 (1 < α≤ 2), substituting λ = τ− t in the functional Eq. (9.4), we obtain the following iteration formula:

uk+1 x, t = uk x, t +
1

Γ α−1

t

0

t−τ α−2 τ− t
∂α

∂tα
uk x, t −N x uk x, t −q x,τ ,

= uk x, t −
α−1
Γ α

t

0

t−τ α−1 ∂α

∂tα
uk x, t −N x uk x, t −q x,τ ,

9 10

Rewriting Eq. (9.10), we get

uk + 1 x, t = uk x, t − α− 1 Jαt
∂α

∂tα
uk x, t −N x uk x, t − q x, τ 9 11

Generally, the following Lagrange multipliers are used for m ≥ 1 (Singh and Kumar 2017):

λ t =
− 1 m

Γ m
τ− t m− 1, m ≥ 1 9 12

The initial approximation u0 can be freely selected if it fulfills the initial and BCs of the problem. However, the effective-
ness of this approach depends on the correct selection of the initial approximation u0. Finally, we approximate the solution
u x, t = lim

k ∞
uk x, t by the kth term solution.

102 9 Variational Iterative Method



9.3 Examples

We use the aforementioned method to solve a linear one-dimensional heat-like model and a nonlinear fractional advection
equation, respectively, in Examples 9.1 and 9.2. It is worth noticing that VIM can also be used to handle linear and nonlinear
fractional differential equations.

Example 9.1 Let us consider the one-dimensional heat-like model (Inokuti et al. 1978; Sadighi et al. 2008) as:

Dα
t u x, t =

1
2
x2uxx x, t , 0 < x < 1, t > 0, 0 < α ≤ 1, 9 13

with the BCs:

u 0, t = 0, u 1, t = et, 9 14

and initial condition (IC):

u x, 0 = x2 9 15

Solution

Comparing m− 1 < α≤m with 0 < α≤ 1 of Eq. (9.13), we get m = 1.
According to VIM and Eq. (9.9), the iteration formula for Eq. (9.13) may be written as:

uk + 1 x, t = uk x, t − Jαt
∂α

∂tα
uk x, t −

1
2
x2

∂2

∂x2
uk x, t 9 16

By the aforemetioned variational iteration formula and choosing u0 = x2, we may find the following approximations:

k=0 u1 x, t = u0−Jαt
∂α

∂tα
u0−

1
2
x2

∂2

∂x2
u0

= x2−Jαt
∂α

∂tα
x2−

1
2
x2

∂2

∂x2
x2

= x2−Jαt 0−x2 = x2 + x2
tα

Γ 1+ α

k=1 u2 x, t = u1−Jαt
∂α

∂tα
u1−

1
2
x2

∂2

∂x2
u1

= x2 + x2
tα

Γ 1+ α
−Jαt

Dα
t x2 + x2

tα

Γ 1+ α

−
1
2
x2

∂2

∂x2
x2 + x2

tα

Γ 1+ α

= x2 + x2
tα

Γ 1+ α
+ x2

t2α

Γ 1+ 2α

Similarly,

k=2 u3 x, t = x2 + x2
tα

Γ 1+ α
+ x2

t2α

Γ 1+ 2α
+ x2

t3α

Γ 1+ 3α

So, the solution of the fractional heat-like Eq. (9.13) may be obtained as:

u x, t = lim
n ∞

un x, t = x2 + x2
tα

Γ 1+ α
+ x2

t2α

Γ 1+ 2α
+ x2

t3α

Γ 1+ 3α
+ ,

= x2 1+
tα

Γ 1+ α
+

t2α

Γ 1+ 2α
+

t3α

Γ 1+ 3α
+ = x2E tα ,

9 17

where E(tα) is called the Mittag-Leffler function, which is given in Chapter 1.
In particular, at α= 1, Eq. (9.17) reduces to u(x, t) = x2et, which is same as the solution of Sadighi et al. (2008). In Figure 9.1,

the present solution is compared with the exact solution by increasing the order of approximation. Figures 9.2–9.5 give the
fourth-order approximate solution plots of Example 9.1 at various fractional-order values.
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Figure 9.1 Comparison plot of the present solution with the exact solution of Example 9.1.
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Figure 9.2 Fourth-order approximate solution plot of Example 9.1 at α = 1.
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Figure 9.3 Fourth-order approximate solution plot of Example 9.1 at α = 0.35.
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Example 9.2 Consider the following nonlinear advection equation (Wazwaz 2007):

∂αu
∂tα

+ u
∂u
∂x

= 0, 0 < α ≤ 1, 9 18

with IC:

u x, 0 = − x 9 19

Solution

In this problem, m = 1 and λ = − 1. Using VIM and Eq. (9.9), the iteration formula for this model may be expressed as:

uk + 1 x, t = uk x, t − Jαt
∂α

∂tα
uk x, t + uk x, t

∂

∂x
uk x, t 9 20
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Figure 9.4 Fourth-order approximate solution plot of Example 9.1 at α = 0.55.
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Figure 9.5 Fourth-order approximate solution plot of Example 9.1 at α = 0.75.
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By the aforemetioned variational iteration formula and considering u0 = − x, we have

k=0 u1 x, t =u0−Jαt
∂α

∂tα
u0 +u0

∂

∂x
u0

= −x−Jαt
∂α

∂tα
−x + −x

∂

∂x
−x

= −x−Jαt x= −x−x
tα

Γ 1+ α

k=1 u2 x, t =u1−Jαt
∂α

∂tα
u1 +u1

∂

∂x
u1

= −x−x
tα

Γ 1+ α
−Jαt

∂α

∂tα
−x−x

tα

Γ 1+ α
+ −x−x

tα

Γ 1+ α

∂

∂x
−x−x

tα

Γ 1+ α

= −x−x
tα

Γ 1+ α
−Jαt −x+ −x−x

tα

Γ 1+ α
−1−

tα

Γ 1+ α

= −x−x
tα

Γ 1+ α
−Jαt 2x

tα

Γ 1+ α
+ x

t2α

Γ 1+ α 2

= −x−x
tα

Γ 1+ α
−2x

t2α

Γ 1+ 2α
−x

Γ 1+ 2α t3α

Γ 1+ α 2Γ 1+ 3α

So, the solution to Eq. (9.18) may be obtained as:

u x, t = lim
n ∞

un x, t

= −x−x
tα

Γ 1+ α
−2x

t2α

Γ 1+ 2α
−x

Γ 1+ 2α t3α

Γ 1+ α 2Γ 1+ 3α
−

9 21

Particularly at α = 1, Eq. (9.21) reduces to a closed-form solution u x, t =
x

t− 1
, which is same as the solution of Wazwaz

(2007). The comparison plot of the present solution with the exact solution is given in Figure 9.6. The third-order approx-
imate solution is plotted in Figures 9.7–9.10 at different values of α.
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Figure 9.6 Comparison plot of the present solution with the exact solution of Example 9.2.
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Figure 9.7 Third-order approximate solution plot of Example 9.2 at α = 1.
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Figure 9.8 Third-order approximate solution plot of Example 9.2 at α = 0.35.
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Figure 9.9 Third-order approximate solution plot of Example 9.2 at α = 0.55.
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10

Weighted Residual Methods

10.1 Introduction

The weighted residual is another effective approach for solving fractional differential equations (FDEs) with boundary
conditions (BCs), often known as boundary value problems (BVPs). The weighted residual method (WRM) is an
approximation approach that uses a linear combination of trial or shape functions with unknown coefficients to estimate
the solution of FDEs. The approximate solution is then replaced in the governing FDE, yielding error or residual. Finally, in
order to determine the unknown coefficients, the residual is made to zero at average points or made as minimal as possible
based on the weight function. Gerald and Wheatley (2004) addressed WRMs, including collocation and Galerkin
approaches. More information on various WRMsmay be found in classic books (Baluch et al. 1983; Finlayson 2013; Hatami
2017). Locker (1971) has provided a least-square method for solving BVPs. Gerald and Wheatley (2004), Lindgren (2009),
Finlayson (2013), Hatami (2017), and Logan (2011) address weighted residual-based finite-element algorithms. Boundary
characteristic orthogonal polynomials (Bhat and Chakraverty 2004) utilized as trial or shape functions are sometimes
advantageous. As a result, Chapter 11 focuses on solving BVP using boundary characteristic orthogonal polynomials
integrated into Galerkin and least-square techniques.
In this regard, this chapter includes several WRMs, namely collocation, Galerkin method, and least-square techniques

used for solving FDEs subject to BCs, and these are demonstrated in Sections 10.2, 10.3, and 10.4, respectively. Comparative
results for specific FDEs with respect to WRMs are also included to understand the methods better.
Let us consider a FDE:

Lu x = f x , 10 1

subject to BCs in the domain Ω. Here, L is the fractional operator acting on u(x), and f (x) is the applied force. In WRM, the

solution of Eq. (10.1) is approximately considered as u x =
n

i = 0

ciϕi x satisfying the BCs. Here, ci are the unknown coeffi-

cients to be determined for the trial functions ϕi(x) for i = 0, 1, 2, …, n, where ϕi’s are linearly independent functions. The
assumed solution is substituted in Eq. (10.1), resulting in an error or residual. This residue is subsequently reduced or made
to vanish in the domain, yielding a system of algebraic equations with unknown coefficients ci. As such, WRMs mainly
consist of the following steps:
Step (i) Let us assume an approximate solution:

u x ≈ u x =
n

i = 0

ciϕi x , 10 2

involving linear independent trial functions ϕi(x) such that u x satisfies the BCs. Alternatively,

u x = u0 x +
n

i = 0

ciϕi x , 10 3

may also be considered where u0(x) is the function satisfying the BCs.
In general, the trial functions are chosen to interpolate the desired solution under BCs as given in Eq. (10.2) or Eq. (10.3).

Various examples of trial function assumptions are discussed in Finlayson (2013). One possible assumption for the shape
functions may be ϕ0 = 1, ϕ1 = x, and ϕi = xi− 1(x− X), for i = 2, 3, …, n− 1 over the domain Ω = [0, X].
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Step (ii) Substitute u x in Lu x − f x 0, which yields an error.
Step (iii) The measure of error is considered as residual, which is written as:

R x = Lu x − f x 10 4

Step (iv) An arbitrary weight function wi(x) is then multiplied with Eq. (10.4) and integrated over Ω, which gives

Ω

wi x Lu x − f x dx=

Ω

wi x R x dx 0, 10 5

for i = 0, 1, …, n. Making every residue zero in the entire domain is not always possible. The integral is either turned to
disappear at finite points or created as small as possible depending on the weight function.
Step (v) Forcing the integral to zero over the entire domain Ω using

Ω

wi x R x dx = 0, 10 6

we obtain n+ 1 independent algebraic equations with n+ 1 unknown coefficients ci, for i= 0, 1,…, n. Solving these algebraic
equations, we get the values of ci. Substituting these obtained values of ci in Eq. (10.2), we achieve the desired approximate
solution of the original equation. It is worth mentioning that in Eq. (10.2) as n ∞ , u x = u x . Further, there exist other
forms of WRMs, such as collocation, least-square, and Galerkin methods depending on the weight function. In this regard,
different types of WRMs are addressed in Sections 10.2–10.4.

10.2 Collocation Method

In the collocation method (Gerald and Wheatley 2004; Logan, 2011; Finlayson 2013; Hatami 2017), the weight function is
considered in terms of the Dirac delta function as:

wk x = δ x−xk =
1, x= xk

0, otherwise
10 7

where k = 0, 1, …, n. This strategy is also known as the point collocation method in the literature. Now using Eq. (10.7), the
integrand Eq. (10.6) may be written as:

Ω

wk x R x dx = R xk

Generally, the residual is set to zero at n+ 1 distinct points xk within the domain Ω:

R xk = L
n

i = 0

ciϕi xk − f xk = 0
n

i = 0

ciL ϕi xk − f xk , 10 8

for computing the unknown coefficients ci for n− 1 collocating points.

10.3 Least-Square Method

In the least-square method (Locker, 1971; Finlayson 2013; Hatami 2017), the residue given in Eq. (10.4) is squared and
integrated over the entire domain Ω:

I =

Ω

R2 x, ci dx 10 9
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The integrand I is then minimized using
∂

∂ci
Ω

R2 x, ci dx = 0, where ci are the unknown coefficients of the approximate

solution u x =
n

i = 0

ciϕi x , which further reduces to

2

Ω

R x; ci
∂R
∂ci

dx = 0, for i = 0, 1, 2,…,n

Ω

R x; ci
∂R
∂ci

dx = 0 10 10

From Eq. (10.10), the weight function for the least-square method is considered as:

W x =
∂R
∂ci

, for i = 0, 1, 2,…,n 10 11

Next, we discuss the Galerkin method.

10.4 Galerkin Method

In the Galerkin method (Gerald and Wheatley 2004; Logan 2011; Finlayson 2013; Hatami 2017), the weight function is
considered in terms of trial functions:

wk = ϕk x , k = 0, 1,…,n, 10 12

such that ϕk’s are (n+ 1) basis functions of x satisfying the BCs.
As such, Eq. (10.6) reduces to

Ω

wk x R x dx=

Ω

ϕk x R x dx=0 10 13

Then, using Eq. (10.13), we obtain the system of equations in terms of the unknown coefficients.

10.5 Numerical Examples

Example 10.1 Consider the following FDE (Chakraverty et al. 2019):

Dαu x + u x = x, 1 < α ≤ 2, 10 14

subject to the BCs u(0) = 0 and u
π

4
= 2 with the domain x 0,

π

4
.

Solution

Here, Lu(x) = Dαu(x) + u(x) and f (x) = x. Let us consider the approximate solution of Eq. (10.14) as Eq. (10.2) at n = 3 be

u x = u3 x = c0ϕ0 x + c1ϕ1 x + c2ϕ2 x + c3ϕ3 x , where trial functions ϕ0 x = 1,ϕ1 x = x,ϕ2 x = x x−
π

4
, and

ϕ3 x = x2 x−
π

4
. Since the approximate solution satisfies the given BCs that help in the computation of unknown

coefficients as:

u 0 = c0ϕ0 0 + c1ϕ1 0 + c2ϕ2 0 + c3ϕ3 0 = 0 c0 = 1, 10 15

u
π

4
= c0ϕ0

π

4
+ c1ϕ1

π

4
+ c2ϕ2

π

4
+ c3ϕ3

π

4
= 2 c1 =

4
π

10 16
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Accordingly, the approximate solution may now be written as:

u x = 1 +
4
π
x + c2 x x−

π

4
+ c3 x

2 x−
π

4
10 17

The Caputo fractional derivatives of Eq. (10.17) for 1 < α≤ 2
may be obtained as:

Dαu x = c2 − c3
π

4
2x2− α

Γ 3− α
+

6c3x3− α

Γ 4− α
10 18

So, the residual function reduces to

R x =Dαu x + u x −x

= c2−c3
π

4
2x2−α

Γ 3−α
+
6c3x3−α

Γ 4−α
+1+

4
π
x+ c2 x x−

π

4
+ c3 x

2 x−
π

4

10 19

Using Collocation Method
Now, the remaining two unknown coefficients c2 and c3 are determined for two collocating points x1 and x2 as shown in

Figure 10.1.

Considering the residual function R(xk) for α = 2 to zero at collocating points x1 =
π

12
and x2 =

π

6
, we obtain the

algebraic equations as follows:

R x1 = − 0 1436c3 + 1 4512c2 + 5 0714, 10 20

and

R x2 = 1 2840c3 + 1 4513c2 + 6 1429 10 21

On solving the aforementioned two equations, we get c2 = − 3.5689 and c3 = − 0.75031. Substituting the values of c2 and
c3 in Eq. (10.17), we obtain the approximate solution of Eq. (10.14) at α = 2 as:

u3 x = 1 + 4 0769x− 2 9793x2 − 0 75044x3 10 22

Similarly, by following the aforementioned procedure, we can obtain the approximate solution of Eq. (10.14) at different
values of fractional order as:

For α =
4
3
, u3 x = 1 + 6 3429x− 11 5114x2 + 6 4380x3, 10 23

For α =
5
3
, u3 x = 1 + 5 3871x− 6 0518x2 + 1 0377x3, 10 24

and so on.
Using Least-Square Method
In order to compute the remaining unknown coefficients c2 and c3 given in Eq. (10.17) using the least-square method, we

have to minimize the residual function Eq. (10.19) at α = 2 in the domain Ω = 0,
π

4
as:

π 4

0

R x; c2, c3
∂R
∂c2

dx = 0 7892793032c3 + 2 009074592c2 + 6 998030335 = 0, 10 25

and

π 4

0

R x; c2, c3
∂R
∂c3

dx = 1 648990455 c3 + 0 7892793032 c2 + 3 700556933 = 0 10 26

x0 = 0
12

x1 =
π

6
x2 =

π
4

x3 =
π

Figure 10.1 Collocation points for the domain Ω = 0,
π

4 .
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On solving Eqs. (10.25) and (10.26), we obtain c2 = − 3.204076831 and c3 = − 0.7105228541. The approximate solution up
to four decimal places is obtained as:

u3 x = 1 + 3 7902x− 2 6458x2 − 0 7105x3 10 27

Likewise, using the aforementioned procedure, wemay find the approximate solution of Eq. (10.14) for various fractional-
order values as follows:

For α =
4
3
, u3 x = 1 + 6 8302 x− 11 7456 x2 + 5 9468 x3, 10 28

For α =
5
3
, u3 x = 1 + 5 3130 x− 6 2731 x2 + 1 4393 x3, 10 29

and so on for other values of α.
Using Galerkin Method
In order to calculate the values of c2 and c3 in Eq. (10.17) using the Galerkin method, we have to use Eq. (10.13) and

residual function Eq. (10.19) at α = 2 in the domain Ω = 0,
π

4
as:

π 4

0

ϕ2 x R x; c2, c3 dx = − 0 04783410291c3 − 0 1217595348c2 − 0 453298539 = 0, 10 30

and

π 4

0

ϕ3 x R x; c2, c3 dx = − 0 03288412695c3 − 0 04783410295c2 − 0 1882900665 = 0 10 31

On solving Eqs. (10.30) and (10.31), we obtain c2 = − 3.438310155 and c3 = − 0.724409822. So, we get the approximate
solution to the original equation up to four decimal places as:

u3 x = 1 + 3 9743 x− 2 8691 x2 − 0 7244 x3, 10 32

Similarly, we may find the approximate solution of Eq. (10.14) for various fractional-order values as follows:

For α =
4
3
, u3 x = 1 + 6 5680x− 12 0425x2 + 6 7494x3, 10 33

For α =
5
3
, u3 x = 1 + 5 3384x− 6 1382x2 + 1 2265x3, 10 34

and so on for other values of α.
To validate the correctness of these methods, the integer-order (α = 2) approximate solutions obtained from these three

methods are compared with the exact solution (Chakraverty et al. 2019) u x = cos 2x + 2−
π

16
sin 2x +

x
4
, which is

illustrated in Figure 10.2. Solution plots of Example 10.1 using three methods are depicted in Figures 10.3 and 10.4 for dif-
ferent values of fractional order. Further, the error u x −u3 x for each method is calculated, and then the respective
errors for WRMs are shown in Figure 10.5.

Example 10.2 Let us consider the following FDE (Chakraverty et al. 2019):

Dαu x + u x + u x = x, 1 < α ≤ 2, 10 35

subject to the BCs u(0) = 0 and u(1) = 0 with the domain x [0, 1].

Solution

Here, Lu(x) = Dαu(x) + u (x) + u(x) and f (x) = x. Let us consider a cubic approximate solution of Eq. (10.35) as
u x = u3 x = c0ϕ0 x + c1ϕ1 x + c2ϕ2 x + c3ϕ3 x , where trial functions ϕ0(x) = 1, ϕ1(x) = x, ϕ2(x) = x (1− x), and
ϕ3(x) = x2 (1− x). Using the given BCs, we get
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u 0 = c0ϕ0 0 + c1ϕ1 0 + c2ϕ2 0 + c3ϕ3 0 = 0 c0 = 0,

10 36

u 1 = c0ϕ0 1 + c1ϕ1 1 + c2ϕ2 1 + c3ϕ3 1 = 0 c1 = 0

10 37

So, the approximate solution reduces to

u x = c2 x 1− x + c3 x
2 1− x 10 38

As such, the residual for 1 < α≤ 2 is obtained as:

R x =Dαu x + u x +u x −x

= c3−c2
2x2−α

Γ 3−α
−
6 c3x3−α

Γ 4−α
+2 c3−c2 x−3c3x2 + c2 x 1−x + c3 x

2 1−x −x
10 39

Using Collocation Method
Now, the two unknown coefficients c2 and c3 are determined for two collocating points x1 = 1

3 and x2 = 2
3, as shown in

Figure 10.6.
Assuming the residual function R(x) for α = 2 to zero at collocating points x = x1 and x = x2, we obtain the algebraic

equations as follows:

R x1 = − 1 444444444c2 + 0 4074074074c3 − 0 3333333333 = 0, 10 40

and

R x2 = − 2 111111111c2 − 1 851851852c3 − 0 6666666667 = 0 10 41

On solving Eqs. (10.40) and (10.41), we get c2 = − 0.2514551805 and c3 = − 0.07334109427. Putting the values of c2 and c3
in Eq. (10.38), we obtain the approximate solution of Eq. (10.35) at α = 2 as:

u3 x = − 0 2514 x + 0 1781 x2 + 0 0733 x3 10 42

Likewise, we may obtain the approximate solution of Eq. (10.35) at various values of α by using the aforementioned
procedure:

Forα=
4
3
, u3 x = −0 3872x+0 5504x2−0 1632x3, 10 43

Forα=
5
3
, u3 x = −0 3264x+0 3362x2−0 0098x3, 10 44

and so on.
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Figure 10.5 Error plot of approximate solutions for Example 10.1.
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Using Least-Square Method
To compute the remaining unknown coefficients c2 and c3 given in Eq. (10.38) using the least-square approach, we need to

minimize the residual function Eq. (10.39) at α = 2 in the domain Ω = [0, 1] as:

1

0

R x; c2, c3
∂R
∂c2

dx = 2 85c3 + 3 7c2 + 1 083333333 = 0, 10 45

and

1

0

R x; c2, c3
∂R
∂c3

dx = 4 876190476c3 + 2 850000000c2 + 1 033333333 = 0 10 46

From Eqs. (10.45) and (10.46), we obtain c2 = − 0.2356532209 and c3 = − 0.07418119845. So, the approximate solution to
four decimal places is written as:

u3 x = − 0 2357x + 0 1615x2 + 0 0742x3 10 47

Following the aforementioned procedure likewise, one can find the approximate solution of Eq. (10.35) for various
fractional-order values as follows:

For α =
4
3
, u3 x = − 0 3966x + 0 5334x2 − 0 1368x3, 10 48

For α =
5
3
, u3 x = − 0 3296x + 0 3495x2 − 0 0199x3 10 49

Using Galerkin Method
In order to compute the values of c2 and c3 in Eq. (10.38) using the Galerkin method at α = 2 in the domain Ω = [0, 1],

we use

1

0

φ2 x R x; c2, c3 dx = − 0 1333333333c3 − 0 3c2 − 0 08333333333 = 0, 10 50

and

1

0

φ3 x R x; c2, c3 dx = − 0 1238095238c3 − 0 1666666667c2 − 0 05 = 0 10 51

On solving Eqs. (10.50) and (10.51), we get c2 = − 0.2446808511 and c3 = − 0.07446808497. So, the approximate solution
to Eq. (10.35) is obtained as:

u3 x = − 0 2447x + 0 1702x2 + 0 0745x3, 10 52

Similarly,

For α =
4
3
, u3 x = − 0 4040x + 0 5998x2 − 0 1957x3, 10 53

For α =
5
3
, u3 x = − 0 3295x + 0 3498x2 − 0 0203x3 10 54

In order to validate these methods, the approximate solutions produced by these three approaches are compared with the

exact solution (Chakraverty et al. 2019) u x = e− x 2 − sin
3
2

x cot
3
2

+ cos
3
2

x + x− 1 at α = 2, which is

shown in Figure 10.7. Figures 10.8 and 10.9 provide approximate solution plots of Example 10.2 for various values of
fractional order. Also, the absolute error of each method is determined, and the corresponding errors for WRMs are dis-
played in Figure 10.10.
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From the aforementioned test examples, It is concluded that

• One can improve the accuracy of the solutions by considering higher-order approximation.

• As shown in Figures 10.5 and 10.10, the Galerkin method gives the highest accuracy for both the examples since the error
produced by this method is minimum compared to the collocation and least-square methods.
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Figure 10.7 Comparison of the approximate solutions of Example 10.2 with the exact solution when α = 2.
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• It is worthmentioning that if the trial functions are chosen in such a way that they form the orthogonal basis, the Galerkin

method is found to be more efficient since ϕi x ϕj x =
ϕ2
i x , i = j

0 i j
is obtained from Eq. (10.13). This technique is

discussed in Chapter 11 in terms of boundary characteristic orthogonal polynomials.
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11

Boundary Characteristic Orthogonal Polynomials

11.1 Introduction

Bhat (1985, 1986) proposed boundary characteristic orthogonal polynomials (BCOPs) in 1985, which have been applied in
various scientific and engineering fields. Several authors have employed BCOPs in many problems, such as Bhat and Chak-
raverty (2004) and Singh and Chakraverty (1994a) for two-dimensional BCOPs first time in a systematic manner. BCOPs
have been beneficial in well-known approaches like Rayleigh–Ritz, Galerkin, and collocation. The Gram–Schmidt ortho-
gonalization approach (Johnson 2014) can be used to generate BCOPs. The resulting BCOPs have to satisfy some of the
boundary conditions of the considered models (Singh and Chakraverty 1994b; Bhat and Chakraverty 2004). Initially,
the general approximation solution to the problem is assumed to be a linear combination of BCOPs. The residual can
be obtained by replacing the approximate solution in the boundary value problem (Singh and Chakraverty 1994a;
Chakraverty et al. 2008). A linear system of equations may be developed by employing the residual. Finally, the resultant
linear systemmay be handled using any known analytical/numerical method. The orthogonal nature of BCOPsmakes them
straightforward to analyze.
Torvik and Bagley (1984) proposed a fractional model after moving a rigid plate dipped in a Newtonian fluid as follows:

a
d2u x

dx2
+ bDαu x + cu x = f x , α =

3
2
, 11 1

where a, b, and c are constants depend on mass, area of the plate, stiffness of spring, fluid density, and viscosity f (x) is the
external force and u(x) stands for the displacement of the plate. Equation (11.1) has been generalized, and numerical techni-
ques have been developed for the solution of this equationwith initial value conditions (Diethelm and Ford 2002; Cenesiz et al.
2010; Wang and Wang 2010; Mekkaoui and Hammouch 2012). One may compute the movement of the plate at any other
points in Newtonian fluid and model multi-point boundary value problems of the B-T equation. As regards, the generalized
nonlinear B-T equation with two-point boundary conditions has been studied by Stanek (Stanek 2013). Moreover, the coeffi-
cients a, b, and cmay change with the changes of fluid density and viscosity. So a, b, and c are treated as functions of x. So, the
three-point boundary value problems of the B-T equation with variable coefficients is written as follows:

d2u x
dx

+ p x Dαu x + q x u x = f x , 0 < α < 2, x a, b , 11 2

with boundary conditions:

u a = a1, u b + λu c = b1, c a, b , 11 3

or

u a + μ u c = a1, u b = b1, c a, b , 11 4

where p(x), q(x), and f (x) are known functions and a1, b1, μ, λ, c are known constants.
The Gram–Schmidt orthogonalization procedure for producing orthogonal polynomials is described in the next section.
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11.2 Gram–Schmidt Orthogonalization Procedure

Let us consider a set of linearly independent functions ( fi(x) = xi, i = 0, 1, 2, …) in [a, b]. From these set of functions, we can
construct appropriate orthogonal functions by using the Gram–Schmidt orthogonalization process (Bhat and Chakraverty
2004; Johnson 2014) as follows:

ϕ0 = f 0,

ϕ1 = f 1 − α10ϕ0,

ϕ2 = f 2 − α20ϕ0 − α21ϕ1,

where, α10 =
f1,ϕ0

ϕ0,ϕ0
, α20 =

f2,ϕ0

ϕ0,ϕ0
, α21 =

f2,ϕ1

ϕ1,ϕ1
, etc., and defines the inner product of the respective polynomials.

In general, we can write the aforementioned procedure as:

ϕ0 = f 0,

ϕi = f i −
i− 1

j = 0

αijϕj,

where,

αij =
f i,ϕj

ϕj,ϕj

=

b

a

W x f i x ϕj x dx

b

a

W x ϕj x ϕj x dx

The aforementioned procedure is valid only when the inner product exists for the interval [a, b] with respect to the weight
function W(x). Throughout the paper, we have considered W(x) = 1 for simplicity.

11.3 Generation of BCOPs

The first member of BCOPs set, viz. ϕ0(x), is chosen as the simplest polynomial of the least order, which satisfies the bound-
ary conditions of the considered problem. The other members of the orthogonal set in the interval a≤ x≤ b are generated by
using the Gram–Schmidt orthogonalization process (Singh and Chakraverty 1994a; Bhat and Chakraverty 2004) as follows:

ϕ1 x = x− l1 ϕ0 x ,

ϕk x = x− lk ϕk− 1 x −mkϕk− 2 x ,

where lk =

b

a
xϕ2

k− 1 x dx

b

a
ϕ2
k− 1 x dx

and mk =

b

a
xϕk− 1 x ϕk− 2 x dx

b

a
ϕ2
k− 2 x dx

.

Here, we consider W(x) = 1. The polynomials ϕk(x) satisfy the orthogonality condition:

b

a

ϕi x ϕj x dx = 0, if i j

Next, we discuss the Galerkin method-based BCOPs for solving the B-T equation with variable coefficient.
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11.4 Galerkin Method with BCOPs

Let us consider three-point boundary value problems Eq. (11.2) subject to boundary conditions of Eqs. (11.3) and (11.4). We
assume an approximate solution for the aforementioned differential equation satisfying the boundary conditions and invol-
ving unknown real constants c0, c1, c2, …, cn as:

u x = r x + h x
n

i = 0

ciϕi x , 11 5

where r(x) and h(x) control the boundary conditions, and ϕi’s are the BCOPs that satisfy the given boundary conditions.
Substituting Eq. (11.5) in Eq. (11.2), we may obtain the residual R as:

R x; c0, c1, c2,…, cn =
d2

dx2
r x + h x

n

i = 0

ciϕi x + p x Dα r x + h x
n

i = 0

ciϕi x

+ q x r x +
n

i = 0

cih x ϕi x − f x

11 6

The residual R is orthogonalized to the (n+ 1) BCOPs functions ϕ0, ϕ1, …, ϕn, which gives

b

a

R x;c0,c1,c2,…,cn ϕj x dx=0, j=0,1,2,…,n,

b

a

d2

dx2
r x + h x

n

i = 0

ciϕi x + p x Dα r x + h x
n

i = 0

ciϕi x

+ q x r x +
n

i = 0
cih x ϕi x − f x

ϕj x dx = 0,

for j = 0, 1, 2,…,n

11 7

where

b

a

ϕi x ϕj x dx = 0, if i j.

Eq. (11.7) gives (n+ 1) simultaneous equations in (n+ 1) unknowns, which can be solved by any standard method. Fur-
ther substituting the evaluated constants c0, c1, …, cn in Eq. (11.5), we may get the approximate solution to the original
Eq. (11.2). One may note that the terms containing ϕ0, ϕ1, …, ϕn will vanish due to the orthogonal property. This makes
the method efficient.
Section 11.5 presents another approach, viz. least-square method (LSM), with BCOPs.

11.5 Least-Square Method with BCOPs

In the LSM (Locker, 1971; Finlayson 2013; Hatami 2017), the residue given in Eq. (11.6) is squared and integrated over the
entire domain [a, b]:

I =

a, b

R2 x, ci dx 11 8

The integrand I is then minimized using
∂

∂ci
a, b

R2 x, ci dx = 0, where ci are the unknown coefficients of the approximate

solution u x = r x + h x
n

i = 0

ciϕi x , which further reduces to
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2

a, b

R x; ci
∂R
∂ci

dx = 0, for i = 0, 1, 2,…,n

a, b

R x; ci
∂R
∂ci

dx = 0 11 9

From Eq. (11.9), the weight function for the LSM is considered as:

W x =
∂R
∂ci

, for i = 0, 1, 2,…,n 11 10

11.6 Application Problems

This section implements the present methods to solve two Bagley–Torvik (B-T) equation examples. Solutions of these exam-
ples are also compared with the exact solution.

Example 11.1 Let us consider the three-point boundary value problem for the generalized B-T equation (Huang
et al. 2016):

D2u x + πx2D3 2u x + 1− 4x1 2 u x = x2 + 2, 11 11

subject to boundary conditions:

u 0 = 0, u
1
5

+ u
1
10

=
1
20

, 11 12

with x 0,
1
5

.

The exact solution of the Eq. (11.11) subject to boundary conditions Eq. (11.12) is u(x) = x2.
Using Galerkin Method Based on BCOPs
Let us consider two terms guess solution of Eqs. (11.11) and (11.12) as:

u x = r x + h x c0ϕ0 x + c1ϕ1 x = r x + h x
1

i = 0

ciϕi x , 11 13

where r x = x2, h x = x x−
1
5

x−
1
10

, which controls the boundary conditions.

The residual function R may be written as:

R x;c0,c1 =D2 r x + h x
1

i=0

ciϕi + πx2D3 2 r x + h x
1

i=0

ciϕi

+ 1−4x0 5 r x + h x
1

i=0

ciϕi −x2−2,

11 14

where ϕ0(x) = 1 and ϕ1(x) = x− 0.1 are the BOCPs in the domain 0,
1
5

.

Substituting the values of the functions r(x), h(x), ϕ0, and ϕ1 in Eq. (11.14), we have

R= 0 000804916−0 000241475c0 + 0 0000402458c1 x5 2 + −0 08c0 + 0 008c1 x3 2

+ 4 001609832c0−1 600643933c1 x7 2 + 8 80257573x9 2c1 + x3−0 3x2 + 6 02x−0 6 c0

x4−0 4x3 + 12 05x2−2 4020x+1 c1

11 15
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Now by using the Galerkin method with BCOPs, we have

1 5

0

Rϕ0 dx = 0, and

1 5

0

Rϕ1 dx = 0, 11 16

which gives the two equations as:

0 00006361285324c0 + 0 004029140957c1 + 8 227871507 × 10− 7 = 0, 11 17

and

0 004013278139c0 + 0 000002115661834c1 + 4 571039726 × 10− 8 = 0 11 18

Solving the aforementioned system of equations, we have

c0 = − 0 00001128223243

c1 = − 0 0002040309496
11 19

So, the solution to Eqs. (11.11) and (11.12) may now be written as:

u x = r x + h x c0ϕ0 x + c1ϕ1 x

= −0 0002040309496x4 + 0 00007033014741x3 + x2 + 1 824172506× 10−7x
11 20

The numerical results of the present solution and the exact solution are shown in Table 11.1. The plot of the exact and
present solutions has also been presented in Figure 11.1. One may see that the exact solution of Eq. (11.11) agrees precisely
by taking two terms only.
Using the Least-Square Method Based on BCOPs
According to the LSM, taking the square of the residual equation, we have

S x;c0,c1 = 0 02416010589c20 + 0 00004870485423c1 + 5 516997793 × 10−7 c0

+ 0 0003394335925c21 + 5 348123125 × 10−8c1 + 6 910824182 × 10−12
11 21

From Eq. (11.8), we have

∂S
∂c0

= 0, and
∂S
∂c1

= 0 11 22

Eq. (11.22) gives two equations as:

0 04832021178c0 + 0 00004870485423c1 + 5 516997793 × 10− 7 = 0, 11 23

0 00004870485423c0 + 0 0006788671850c1 + 5 348123125 × 10− 8 = 0 11 24

Table 11.1 Comparison of the present solution with the exact solution.

x Present solution n = 1 Exact solution (Huang et al. 2016)

0.00 0.00 0.00

0.02 4.000014 × 10−4 4 × 10−4

0.04 16.000003 × 10−4 16 × 10−4

0.06 35.999989 × 10−4 36 × 10−4

0.08 63.999986 × 10−4 64 × 10−4

0.10 1 × 10−2 1 × 10−2

0.12 144.000029 × 10−4 144 × 10−4
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Solving the aforementioned linear system of equations, we have

c0 = −0 0000113389906

c1 = −0 00007796660162
11 25

The solution of original Eq. (11.11) may be written as:

u x = r x + h x c0ϕ0 x + c1ϕ1 x

= −0 00007796660162x4 + 0 00001984765005x3 + x2−7 08466088 × 10−8x,
11 26

Again the numerical results of the present solution and the exact solutions are given in Table 11.2. The exact and present
solution plot has been depicted in Figure 11.2. One may see that the exact solution of Eq. (11.11) is same as the present
method solution by taking two terms.

Example 11.2 Next, we consider the following three-point boundary value problem for the generalized B-T equation of
variable coefficient (Huang et al. 2016):

D2u x − 5 πxD1 2u x + 16x1 2u x = 6x, 11 27

subject to the boundary conditions:

u 0 + 2u
1
10

=
1
500

, u
1
5

=
1
125

, 11 28

Exact solution

0.04

Present solution

0.03

0.02

0.01

0

u(
x)

0
0.05 0.10

x
0.15 0.20

Figure 11.1 Behavior of the exact and present solution of Example 11.1.

Table 11.2 Comparison of the present solution with the exact solution.

x Present solution n = 1 Exact solution (Huang et al. 2016)

0.00 0.00 0.00

0.02 3.999985 × 10−4 4 × 10−4

0.04 15.999974 × 10−4 16 × 10−4

0.06 35.999972 × 10−4 36 × 10−4

0.08 63.999981 × 10−4 64 × 10−4

0.10 1 × 10−2 1 × 10−2

0.12 144.000024 × 10−4 144 × 10−4
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with x 0,
1
5

.

The exact solution of the Eqs. (11.27) and (11.28) is u(x) = x3.
Using Galerkin Method Based on BCOPs
We again consider two terms guess solution as:

u x = r x + h x c0ϕ0 x + c1ϕ1 x = r x + h x
1

i = 0

ciϕi x , 11 29

where r x = x3,h x = x x−
1
5

x−
1
10

, which control the boundary conditions.

The residual function is written as”

R x, c0, c1 = D2 r x + h x
1

i = 0

ciϕi − 5 πxD1 2 r x + h x
1

i = 0

ciϕi

+ 16x
1
2 r x + h x

1

i = 0

ciϕi − 6x,

11 30

where ϕ0(x) = 1 and ϕ1(x) = x− 0.1 are the BCOPs in the domain 0,
1
5

.

Using the values of the functions r(x), h(x), ϕ0, and ϕ1 in Eq. (11.30), we obtain

R = − 0 00321968 + 0 001287871c1 − 0 00321968c0 x7 2 + 0 1199597541c0 − 0 01199597541c1 x3 2

+ 0 1331991804c1 − 0 799195082c0 x5 2 − 2 28939391 x9 2c1 + − 2 4x + 0 1 + 12x2 c1 + 6x− 0 6 c0

11 31

With the help of the Galerkin method with BCOPs, we have

1 5

0

Rϕ0 dx = 0, and

1 5

0

Rϕ1 dx = 0 11 32

Solving Eq. (11.32) gives the two equations as:

0 00004091095414c0 + 0 003990955764c1 − 5 119589935 × 10− 7 = 0, 11 33

and

0 003991368857c0 − 2 254426072 × 10− 7c1 − 3 257920868 × 10− 8 = 0 11 34

Exact solution

0.04

Present solution

0.03

0.02

0.01

0

u(
x)

0
0.05 0.10

x
0.15 0.20

Figure 11.2 Behavior of the exact and present solution of Example 11.1.
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Solving the aforementioned two linear systems of equations, we get

c0 = 0 000008169655751

c1 = 0 0001281960501
11 35

Accordingly, the solution of original Eq. (11.27) may now be obtained as:

u x = 0 0001281960501x4 + x3 + 0 00000395890578x2 − 9 29989852 × 10− 8x, 11 36

The numerical results of the present solution and the exact solution are given in Table 11.3. The plot of the exact and
present solutions has been presented in Figure 11.3. One may see that the exact solution of Eq. (11.27) is in good agreement
with the present solution by taking two terms.
Using the Least-Square Method Based on BCOPs
Taking the square of the residual equation Eq. (11.31), we have

S x; c0, c1 = 0 02389672501c20 + − 0 0001433717427c1 − 3 897731001 × 10− 7 c0

+ 3 317228577 × 10− 12 + 0 0003352149388c21 − 4 043552417 × 10− 8c1,
11 37

From Eq. (11.8), we have

∂S
∂c0

= 0, and
∂S
∂c1

= 0 11 38

Eq. (11.38) provides two equations as:

0 04779345002c0−0 00001433717427c1−3 897731001 × 10−7 = 0, 11 39

− 0 00001433717427c0 + 0 0006704298776c1 − 4 043552417 × 10− 8 = 0 11 40

Table 11.3 Comparison of the present solution with the exact solution.

x Present solution n = 1 Exact solution (Huang et al. 2016)

0.00 0.00 0.00

0.02 7.999399 × 10−6 8 × 10−6

0.04 64.000183 × 10−6 64 × 10−6

0.06 216.001022 × 10−6 216 × 10−6

0.08 512.001076 × 10−6 512 × 10−6

0.10 1 × 10−3 1 × 10−3

0.12 1727.99794 × 10−6 1728 × 10−6

Exact solution

0.008

Present solution

0

u(
x)

0.05 0.10
x

0.15 0.20

0.007

0.006

0.005

0.004

0.003

0.002

0.001

0

Figure 11.3 Behavior of the exact and present solution of Example 11.2.
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Solving Eqs. (11.39) and (11.40), we get

c0 = 0 000008173511675

c1 = 0 00006048762233
11 41

So, we obtain the approximate solution of Eq. (11.27) as:

u x = 0 00006048762233x4 + x3 + 5 72327614 × 10− 7x2 + 4 24949888 × 10− 8x 11 42

One may see that the exact solution of Eq. (11.27) agrees precisely by taking two terms. The numerical results of the pres-
ent solution and the exact solution are given in Table 11.4. The plot of the exact and present solutions has been illustrated in
Figure 11.4.

From the results obtained from Examples 11.1 and 11.2, we can draw the following conclusions:

• The present solutions are in good agreement with the exact solutions.

• The accuracy of present methods may be improved by taking more terms of BCOPs.

• The methods are used in linear and nonlinear fractional differential equations, and the solutions are validated.
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Figure 11.4 Behavior of the exact and present solution of Example 11.2.
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12

Residual Power Series Method

12.1 Introduction

In Chapter 11, we have already discussed boundary characteristics orthogonal polynomials-based solution of linear and
nonlinear ordinary/partial/fractional differential equations where the orthogonal polynomials are generated by using
the Gram–Schmidt orthogonalization procedure. In this chapter, we will discuss about residual power series method
(RPSM). The RPSM was first developed in 2013 by Omar Abu Arqub, a Jordanian mathematician, to determine the values
of the coefficients of power series solution for the first- and second-order fuzzy differential equations (Arqub 2013). RPSM is
an intuitive and reliable to construct power series solutions for linear and nonlinear equations without linearization, per-
turbation, or discretization. Over the last few years, the RPSMhas been used to solve different nonlinear ordinary and partial
differential equations (PDEs) of various forms, classifications, and orders. One may find the successful implementation of
this method in the solutions of the generalized Lane–Emden equation (Arqub et al. 2013), higher-order ordinary differential
equations (Arqub et al. 2013), fractional coupled physical equations arising in fluids flow (Arafa and Elmahdy 2018), solitary
pattern solutions for nonlinear time-fractional dispersive PDEs (Arqub et al. 2015), and predicting and representing the
multiplicity of solutions to boundary value problems of fractional order (Arqub et al. 2014), etc. The RPSM distinguishes
itself frommany other analytical and numerical methods in some significant respects (El-Ajou et al. 2015). Firstly, the coef-
ficients of the corresponding terms do not need to be compared, and a recursion relation is not required. Secondly, by mini-
mizing the associated residual error, the RPSM provides a straightforward way to ensure the convergence of the series
solution. Thirdly, computational round-off errors do not impact the RPSM and do not take substantial computer memory
and time. Fourthly, while shifting from the low-order to the higher-order and from simple linearity to complex nonlinearity,
the RPSM does not involve any conversion. Consequently, the method can be employed directly to the given problem by
choosing the suitable initial guess approximation. Before explaining the detailed procedure of this method, let us define
some useful theorems and lemmas in the following sections.

12.2 Theorems and Lemma Related to RPSM

Definition 12.1 (Arafa and Elmahdy 2018)
A series of the form:

∞

k = 0

ak t− t0
kα = a0 + a1 t− t0

α + a2 t− t0
2α + , for 0 ≤ n− 1 < α ≤ n, t ≥ t0, 12 1

is called fractional power series expansion (FPSE) at t = t0, where ak is the coefficient of series.

Theorem 12.1 (Hira and Ghazala 2017; Jena and Chakraverty 2019a)

If f t =
∞

k = 0
ak t− t0

kα and Dkαf (t) C(t0, t0 + R) for k = 0, 1, 2, … then the value of ak in Eq. (12.1) is given by

ak =
Dkαf t0
Γ kα + 1

.
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Definition 12.2 (Jena and Chakraverty 2019b)

An FPSE of the form
∞

k = 0
bk x t− t0

kα is called multiple FPSE about t = t0, where bk’s are coefficients of the series.

12.3 Basic Idea of RPSM

In order to provide the approximate solution for nonlinear fractional-order differential equation using RPSM, a general
nonlinear fractional differential equation is considered as:

Dα
t ψ x, t = N ψ + R ψ , 12 2

subject to the initial condition (IC):

ψ x, 0 = b x , 12 3

where N(ψ) is a nonlinear term and R(ψ) is the linear term.
Step 1. Let us assume that the solution of Eq. (12.2) in terms of fractional power series about the initial point t = t0 is

written as (Arafa and Elmahdy 2018; Jena and Chakraverty 2019a):

ψ x, t =
∞

k− 0

bk x
tkα

Γ 1 + kα
, 0 < α ≤ 1, − ∞ < x < ∞ , 0 ≤ t < R 12 4

To evaluate the value of ψ(x, t), let ψm(x, t) signifies the mth truncated series of ψ(x, t) as:

ψm x, t =
m

k = 0

bk x
tαk

Γ αk + 1
, 0 < α ≤ 1, 0 ≤ t 12 5

For m = 0, the 0th residual power series (RPS) solution of ψ(x, t) may be written as:

ψ0 x, t = b0 x 12 6

Using Eq. (12.6), Eq. (12.5) can be modified as:

ψm x, t = b0 x +
m

k = 1

bk x
tαk

Γ αk + 1
, 0 < α ≤ 1, 0 ≤ t,m = 1, 2, 3,… 12 7

So mth RPS solution can be evaluated after obtaining all bk(x), k = 1, 2, …, m.
Step 2. Let us consider the residual function (RF) of Eq. (12.2) as (Arafa and Elmahdy 2018):

Resψ x, t = Dα
t ψ x, t −N ψ −R ψ , 12 8

and mth RF may be written as (Arafa and Elmahdy 2018):

Resψ ,m x, t = Dα
t ψm x, t −N ψm −R ψm , m = 1, 2, 3,… 12 9

Some useful results about Resψ , m(x, t) have been included in (Jena and Chakraverty 2019a, 2019b), which are given as
follows:

Resψ x, t = 0

Lim
m ∞

Resψ ,m x, t = Resψ x, t 12 10

Diα
t Resψ x, 0 = Diα

t Resψ ,m x, 0 = 0, i = 0, 1, 2,…,m

Step 3. Putting Eq. (12.7) into Eq. (12.9) and calculating D k− 1 α
t Resψ ,m x, t , k = 1, 2,… at t = 0, together with the afore-

mentioned three results, we obtain the following algebraic equations:

D k− 1 α
t Resψ ,m x, 0 = 0, 0 < α ≤ 1, k = 1, 2,… 12 11

Step 4. By solving Eq. (12.11), we can get the coefficients bk(x), k = 1, 2, …m. Thus mth RPS approximate solution is
derived.
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12.4 Convergence Analysis

Lemma 12.1 If f(x) is a continuous function and α, β > 0 then

Iαc I
β
c f x = Iα + β

c f x = Iβc I
α
c f x

Theorem 12.2 (Hira and Ghazala 2017; Jena and Chakraverty 2019a, 2019b)

(a) If the FPSE of the form
∞

n = 0
anxnα, x ≥ 0 converges at x = x1, then it converges absolutely x satisfying |x| < |x1|.

(b) If the FPSE diverges at x = x1, then it will diverge x such that |x| > |x1|.

Theorem 12.3 (Hira and Ghazala 2017; Jena and Chakraverty 2019a, 2019b)

Suppose Dr + kα
t ,Dr + k + 1 α

t C R, t0 × R, t0 + R , then

Ir + kα
t Dr + kα

t u x, t − Ir + k + 1 α
t Dr + k + 1 α

t u x, t =
t− t0

r + kα

Γ r + kα + 1
Dr + kα
t u x, t0 ,

where Dr + kα
t = Dt Dt Dt…

r− times
Dα
t D

α
t D

α
t …

k− times

and 0≤ n− 1 < α≤ n.

Theorem 12.4 (Hira and Ghazala 2017; Jena and Chakraverty 2019a, 2019b)

Let w x, t ,Dkα
t w x, t C R, t0 × R, t0 + R where k = 0, 1, 2, …, N+ 1 and j = 0, 1, 2, …, n− 1. Also Dkα

t w x, t may be
differentiated n− 1 times with respect to t. Then,

w x, t
n− 1

j = 0

N

i = 0

Wj + iα x t− t0
j + iα,

where Wj + iα x =
Dj + iα
t w x, t0

Γ j + iα + 1
Also, a value ε, 0≤ ε≤ t, the error term has the term as follows:

EN x, t = sup
t 0,T

n− 1

j = 0

Dj + N + 1 αw x, ε
Γ N + 1 α + j + 1

t N + 1 α + j

Interested authors may see the proofs and details of the aforementioned theorems in the references (Hira and Ghazala
2017; Jena and Chakraverty 2019a, 2019b).

12.5 Examples

In order to demonstrate the fundamental concept of RPSM, we consider the following two time-fractional one-dimensional
heat-like and nonlinear advection equations, respectively, in Examples 12.1 and 12.2.

Example 12.1 Let us consider the one-dimensional heat-like model (Özis and Agırseven 2008; Sadighi et al. 2008) as:

Dα
t ψ x, t =

1
2
x2ψ xx x, t , 0 < x < 1, t > 0, 0 < α ≤ 1, 12 12

with the boundary conditions (BCs):

ψ 0, t = 0, ψ 1, t = et 12 13

and IC:

ψ x, 0 = x2 12 14
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Solution

According to the RPSM, ψ0(x, t) = x2 and the infinite series solution of Eq. (12.12) can be written as:

ψ x, t = x2 +
∞

k = 1

bk x
tαk

Γ αk + 1
12 15

The mth truncated series solution of ψ(x, t) becomes

ψm x, t = x2 +
m

k = 1

bk x
tαk

Γ αk + 1
, m = 1, 2, 3,… 12 16

For m = 1, first RPS solution for Eq. (12.7) may be written as:

ψ1 x, t = x2 + b1 x
tα

Γ α + 1
12 17

To determine the value of b1(x), we substitute Eq. (12.17) in the first RF of Eq. (12.12) Resψ ,1 x, t = Dα
t ψ1 x, t

−
1
2
x2 ψ1 x, t xx , this gives

Resψ ,1 x, t = b1 x −
1
2
x2 2 + b1 x

tα

Γ α + 1
12 18

Using (iii) of Eq. (12.10) for i = 0, that is, Resψ(x, 0) = Resψ ,1(x, 0) = 0, we get

Resψ ,1 x, 0 = b1 x −
1
2
x2 2 + b1 x × 0 = 0

b1 x = x2 12 19

For m = 2, second RPS solution for Eq. (12.7) may be written as:

ψ2 x, t = x2 + x2
tα

Γ α + 1
+ b2 x

t2α

Γ 2α + 1
12 20

To find the value of b2(x), Eq. (12.20) is substituted in the second RF of Eq. (12.12) Re sψ ,2 x, t = Dα
t ψ2 x, t

−
1
2
x2 ψ2 x, t xx . Then, we have

Resψ ,2 x, t = x2 +
b2 x tα

Γ 2α + 1
Γ 2α + 1
Γ α + 1

−
1
2
x2 2 +

2tα

Γ α + 1
+ b2 x

t2α

Γ 2α + 1

=
b2 x tα

Γ α + 1
−

x2tα

Γ α + 1
− b2 x

t2α

Γ 2α + 1
x2

2

12 21

Using (iii) of Eq. (12.10) for i = 1 that is Dα
t Re sψ x, 0 = Dα

t Re sψ ,2 x, 0 = 0, we get

Dα
t Re sψ ,2 x, 0 = b2 x − x2 −

b2 x x2

2Γ 2α + 1
Γ 2α + 1 tα

Γ α + 1 t = 0

= 0,

b2 x = x2 12 22

Similarly, for m = 3, third RPS solution for the Eq. (12.7) is expressed as:

ψ3 x, t = x2 + x2
tα

Γ α + 1
+ x2

t2α

Γ 2α + 1
+ b3 x

t3α

Γ 3α + 1
, 12 23
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Putting Eq. (12.23) in the third RF of Eq. (12.12) Re sψ ,3 x,t = Dα
t ψ3 x,t −

1
2
x2 ψ3 x,t xx , we have

Resψ ,3 x, t = x2 + x2
tα

Γ α + 1
+ b3 x

t2α

Γ 2α + 1

−
1
2
x2 2 +

2tα

Γ α + 1
+

2t2α

Γ 2α + 1
+ b3 x

t3α

Γ 3α + 1

12 24

Using Eq. (12.10) for i = 2, that is D2α
t Re sψ x, 0 = D2α

t Re sψ ,3 x, 0 = 0, it follows that

b3 x = x2 12 25

Continuing this way, one may find the values of b4(x), b5(x), …
So, the solution of the fractional heat-like Eq. (12.12) may be obtained as:

ψ x, t = x2 + x2
tα

Γ 1 + α
+ x2

t2α

Γ 1 + 2α
+ x2

t3α

Γ 1 + 3α
+ ,

= x2 1 +
tα

Γ 1 + α
+

t2α

Γ 1 + 2α
+

t3α

Γ 1 + 3α
+ = x2E tα ,

12 26

where E(tα) is called the Mittag-Leffler function, which is given in Chapter 1.
In particular, at α= 1, Eq. (12.26) reduces to ψ(x, t) = x2etwhich is same as the solution of Sadighi et al. (2008). The present

solution is compared with the exact solution with an increasing number of terms of solution at α = 1, which is given in
Figure 12.1. Figures 12.2–12.5 exhibit the fourth-order approximate solution plots of Example 12.1 for various α values.
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Figure 12.1 Comparison plot of the present solution with the exact solution at α = 1 and t = 0.6.
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Figure 12.2 Fourth-order approximate solution plot of Example 12.1
at α = 1.
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Figure 12.3 Fourth-order approximate solution plot of Example 12.1
at α = 0.15.
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Figure 12.4 Fourth-order approximate solution plot of Example 12.1
at α = 0.35.
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Figure 12.5 Fourth-order approximate solution plot of Example 12.1
at α = 0.55.

134 12 Residual Power Series Method



Example 12.2 Consider the following nonlinear advection equation (Wazwaz 2007):

∂αψ

∂tα
+ ψ

∂ψ

∂x
= 0, 0 < α ≤ 1, 12 27

with IC:

ψ x, 0 = −x 12 28

Solution

Here, ψ0(x, t) = −x and the infinite series solution of Eq. (12.27) is written as:

ψ x, t = − x +
∞

k = 1

bk x
tαk

Γ αk + 1
12 29

The mth truncated series solution of ψ(x, t) becomes

ψm x, t = − x +
m

k = 1

bk x
tαk

Γ αk + 1
, m = 1, 2, 3,… 12 30

For m = 1, first RPS solution for Eq. (12.7) may be written as:

ψ1 x, t = − x + b1 x
tα

Γ α + 1
12 31

Plugging Eq. (12.31) in the first RF of Eq. (12.27) Resψ ,1 x, t =
∂αψ1

∂tα
+ ψ1

∂ψ1

∂x
, it gives

Resψ ,1 x, t = b1 x + − x + b1 x
tα

Γ α + 1
− 1 + b1 x

tα

Γ α + 1
12 32

Applying (iii) of Eq. (12.10) for i = 0, that is Resψ(x, 0) = Resψ , 1(x, 0) = 0, we obtain

Resψ ,1 x, 0 = b1 x + x = 0

b1 x = − x 12 33

For m = 2, second RPS solution for Eq. (12.7) may be written as:

ψ2 x, t = − x + − x
tα

Γ α + 1
+ b2 x

t2α

Γ 2α + 1
12 34

To find the value of b2(x), substituting Eq. (12.34) in the second RF of Eq. (12.27) Resψ ,2 x, t =
∂αψ2

∂tα
+ ψ2

∂ψ2

∂x
, we have

Resψ ,2 x, t = − x + b2 x
tα

Γ α + 1
+ − x + − x

tα

Γ α + 1
+ b2 x

t2α

Γ 2α + 1

− 1−
tα

Γ α + 1
+ b2 x

t2α

Γ 2α + 1

12 35

Using (iii) of Eq. (12.10) for i = 1, that is, Dα
t Re sψ x, 0 = Dα

t Re sψ ,2 x, 0 = 0, we get

Dα
t Resψ ,2 x, 0 =

b2 x + − x + b2 x
tα

Γ α + 1
− 1−

tα

Γ α + 1
+ b2 x

t2α

Γ 2α + 1
+

− x + − x
tα

Γ α + 1
+ b2 x

t2α

Γ 2α + 1
− 1 + b2 x

tα

Γ α + 1 t = 0

= 0,

b2 x = − 2x 12 36

Similarly, for m = 3, third RPS solution for the Eq. (12.7) is expressed as:

ψ3 x, t = − x− x
tα

Γ α + 1
− 2x

t2α

Γ 2α + 1
+ b3 x

t3α

Γ 3α + 1
, 12 37
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Putting Eq. (12.37) in the third RF of Eq. (12.27), we have

Resψ ,3 x, t = − x− 2x
tα

Γ α + 1
+ b3 x

t2α

Γ 2α + 1
+ − x− x

tα

Γ α + 1
− 2x

t2α

Γ 2α + 1
+ b3 x

t3α

Γ 3α + 1

− 1−
tα

Γ α + 1
− 2

t2α

Γ 2α + 1
+ b3 x

t3α

Γ 3α + 1

= − x− 2x
tα

Γ α + 1
+ b3 x

t2α

Γ 2α + 1
+ x + 2x

tα

Γ α + 1
+

4x
Γ 2α + 1

+
x

Γ α + 1 2 t2α

+ − b3 x
x

Γ 3α + 1
+

4x
Γ 2α + 1 Γ α + 1

−
b3 x

Γ 3α + 1
t3α +

− xb3 x − b3 x
Γ α + 1 Γ 3α + 1

+
4x

Γ 2α + 1 2 t4α

+
− 2b3 x − 2xb3 x
Γ 2α + 1 Γ 3α + 1

t5α + b3 x b3 x
t6α

Γ 3α + 1 2

Using Eq. (12.9) for i = 2 that is D2α
t Re sψ x, 0 = D2α

t Re sψ ,3 x, 0 = 0, it follows that

D2α
t Re sψ ,3 x, 0 =

b3 x + Γ 2α + 1
4x

Γ 2α + 1
+

x

Γ α + 1 2 +

− b3 x
x

Γ 3α + 1
+

4x
Γ 2α + 1 Γ α + 1

−
b3 x

Γ 3α + 1
Γ 3α + 1 tα

Γ α + 1
+

− xb3 x − b3 x
Γ α + 1 Γ 3α + 1

+
4x

Γ 2α + 1 2

Γ 4α + 1 t2α

Γ 2α + 1

+
− 2b3 x − 2xb3 x
Γ 2α + 1 Γ 3α + 1

Γ 5α + 1 t3α

Γ 3α + 1
+

b3 x b3 x

Γ 3α + 1 2

Γ 6α + 1 t4α

Γ 4α + 1
t = 0

= 0,

b3 x = − 4x− x
Γ 2α + 1

Γ α + 1 2 12 38

Continuing the process likewise, one may find the values of b4(x), b5(x), …
So, the solution to Eq. (12.27) may be obtained as:

ψ x, t = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
− 12 39

Particularly at α= 1, Eq. (12.39) reduces to a solution ψ x, t =
x

t− 1
, which is same as the solution of Wazwaz (2007). The

comparison of the present solution with the exact solution at α = 1 is shown in Figure 12.6. Plots of the third-order approx-
imate solutions of Example 12.2 for a wide range of alpha values are presented in Figures 12.7–12.10.
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Figure 12.6 Comparison plot of the present solution with the exact solution at α = 1 and t = 0.6.
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Figure 12.7 Third-order approximate solution plot of Example 12.2
at α = 1.
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Figure 12.8 Third-order approximate solution plot of Example 12.2
at α = 0.15.
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Figure 12.9 Third-order approximate solution plot of Example 12.2
at α = 0.35.

12.5 Examples 137



References

Arafa, A. and Elmahdy, G. (2018). Application of residual power series method to fractional coupled physical equations arising in
fluids flow. International Journal of Differential Equations 2018, 7692849: 10.

Arqub, O.A. (2013). Series solution of fuzzy differential equations under strongly generalized differentiability. Journal of Advanced
Research in Applied Mathematics 5 (1): 31–52.

Arqub, O.A., El-Ajou, A., Bataineh, A.S. and Hashim, I. (2013). A representation of the exact solution of generalized Lane-Emden
equations using a new analytical method. Abstract and Applied Analysis 2013378593: 10.

Arqub, O.A., Abo-Hammour, Z., Al-Badarneh, R. and Momani, S. (2013). A reliable analytical method for solving higher-order
initial value problems. Discrete Dynamics in Nature and Society 2013, 673829: 12.

Arqub, O.A., El-Ajou, A., Zhour, Z.A., and Momani, S. (2014). Multiple solutions of nonlinear boundary value problems of
fractional order: a new analytic iterative technique. Entropy 16 (1): 471–493.

Arqub, O.A., El-Ajou, A., and Momani, S. (2015). Constructing and predicting solitary pattern solutions for nonlinear time
fractional dispersive partial differential equations. Journal of Computational Physics 293: 385–399.

El-Ajou, A., Arqub, O.A., Momani, S. et al. (2015). A novel expansion iterative method for solving linear partial differential
equations of fractional order. Applied Mathematics and Computation 257: 119–133.

Hira, T. and Ghazala, A. (2017). Residual power series method for solving time-space-fractional Benney-Lin equation arising in
falling film problems. Journal of Applied Mathematics and Computing 55: 683–708.

Jena, R.M. and Chakraverty, S. (2019a). Residual power series method for solving time-fractional model of vibration equation of
large membranes. Journal of Applied and Computational Mechanics 5 (4): 603–615.

Jena, R.M. and Chakraverty, S. (2019b). A new iterative method based solution for fractional Black-Scholes Option Pricing
Equations (BSOPE). SN Applied Sciences 1 (1): 95.

Özis, T. and Agırseven, D. (2008). He’s homotopy perturbation method for solving heat-like and wave-like equations with variable
coefficients. Physics Letters A 372: 5944–5950.

Sadighi, A., Ganji, D.D., Gorji, M., and Tolou, N. (2008). Numerical simulation of heat-like models with variable coefficients by the
variational iteration method. Journal of Physics: Conference Series 96: 012083.

Wazwaz, A.M. (2007). A comparison between the variational iteration method and adomian decomposition method. Journal of
Computational and Applied Mathematics 207: 129–136.

10

–10
–10–5

–5
5 5

0 0
xt

So
lu

tio
n

1500

1000

500

0

–500

–1000

–1500
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13

Homotopy Analysis Method

13.1 Introduction

In Chapter 12, we have discussed the residual power series method (RPSM) based on the generalized Taylor’s series formula
and the residual error function for solving linear and nonlinear ordinary/partial/fractional differential equations. In this
chapter, we will address the homotopy analysis method (HAM). Various computationally efficient methods have been
developed recently to solve fractional differential equations. However, neither perturbation nor non-perturbation
approaches can provide an easy way to conveniently modify and monitor the convergence region and rate of the series.
Liao (1995, 2005b) suggested the homotopy analysis approach in 1992. Based on the homotopy of topology, the validity
of the HAM is independent of whether there exist small parameters in the considered equation (Liao 2003, 2004, 2009)
or not. Hence, HAM can overcome the previous restrictions and limitations of the perturbation techniques to allow us
to examine highly nonlinear problems (Liao 2005a). This approach includes a certain auxiliary parameter ℏ 0 and an
auxiliary linear operator L, which gives us an easy way to monitor and adjust the rate of convergence of the series solution
(Jena et al. 2019; Srivastava et al. 2020). Several researchers have successfully applied HAM to solve various types of non-
linear physical problems arising in science and engineering (Zhang et al. 2011; Sakar and Erdogan 2013).

13.2 Theory of Homotopy Analysis Method

To illustrate the idea of HAM, we consider the following fractional differential equation (Liao 1995, 2003, 2004, 2005a,
2005b, 2009; Jena et al. 2019; Srivastava et al. 2020) in general:

FD u x, t = 0, x, t Ω, 13 1

where FD is a fractional operator and u(x, t) is the unknown function in the domain Ω. Generalizing the traditional homo-
topy method (Liao 1995, 2003, 2004, 2005a, 2005b, 2009), the zero-order deformation equation is constructed and can be
written as:

1− p L ϕ x, t; p − u0 x, t = pℏH x, t FD ϕ x, t; p , 13 2

subject to the initial conditions (ICs):

ϕ k x, 0; p = gk x , k = 0, 1, 2,…,m− 1, 13 3

where p [0, 1] is the embedding parameter, ℏ 0 is a nonzero auxiliary parameter, H(x, t) 0 is a nonzero auxiliary
function, u0(x, t) is the IC of u(x, t), ϕ(x, t; p) is the unknown function, and L = Dα

t n− 1 < α ≤ n is an auxiliary linear
operator with the property (Sakar and Erdogan 2013):

L ϕ x, t = 0 when ϕ x, t = 0 13 4
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It may be noted that one has the freedom to choose auxiliary parameters such as ℏ and L in the HAM. By substituting p= 0
and p = 1 in Eq. (13.2), we obtain

ϕ x, t; 0 = u0 x, t , and ϕ x, t; 1 = u x, t , 13 5

respectively. Thus, as p increases from 0 to 1, the solution ϕ(x, t; p) varies from u0(x, t ) to the solution u(x, t ). Expanding ϕ(x,
t; p) using Taylor’s series with respect to p, we have

ϕ x, t; p = u0 x, t +
∞

m = 1

um x, t pm, 13 6

where

um x, t =
1
m

∂mϕ x, t; p
∂pm p = 0

13 7

Equation (13.6) converges at p = 1 if the auxiliary linear operator, the initial guess, the auxiliary operator ℏ, and the aux-
iliary function are properly chosen, and then we get

u x, t = u0 x, t +
∞

m = 1

um x, t 13 8

Substituting ℏ = − 1, Eq. (13.2) reduces to

1− p L ϕ x, t; p − u0 x, t + pH x, t FD ϕ x, t; p = 0 13 9

The aforementioned type of equation may generally be obtained in HPM. So HPM is a particular case of HAM.
Now, let us define the vector as:

un = u0 x, t , u1 x, t ,…, un x, t 13 10

Differentiating Eq. (13.2)m times with respect to p, putting p = 0 and then dividing them by m!, we obtain themth-order
deformation equation with the assumption H(x, t) = 1 as follows (Liao 2003):

L um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 13 11

subject to the following ICs:

u k
m x, 0 = 0, k = 0, 1, 2,…,m− 1, 13 12

where

Rm um− 1 x, t =
1

m− 1
∂m− 1FD ϕ x, t; p

∂pm− 1
p = 0

, 13 13

and

χm =
0, m ≤ 1

1, m > 1
13 14

Applying an integral operator Jαt on both sides of Eq. (13.11), we find

Jαt D
α
t um x, t − χmum− 1 x, t = ℏJαt Rm um− 1 x, t

um x, t = χmum− 1 x, t + ℏJαt Rm um− 1 x, t
13 15

The mth-order approximate solution is then written as

u x, t =
m− 1

k = 0

uk x, t 13 16
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13.3 Convergence Theorem of HAM

Theorem 13.1 (Sakar and Erdogan 2013)

As long as the series u x, t = u0 x, t +
∞

m = 1
um x, t converges, where um(x, t) is governed by Eq. (13.11) under the

definitions Eqs. (13.13) and (13.14), it must be a solution of Eq. (13.1).
Proof: One may see reference (Liao 2003) for the proof of this theorem.

13.4 Test Examples

Here, we apply the present method to solve a time-fractional one-dimensional heat-like equation in Example 13.1 and
fractional nonlinear advection equation in Example 13.2.

Example 13.1 Let us consider the one-dimensional heat-like model (Özis and Agırseven 2008; Sadighi et al. 2008) as:

Dα
t u x, t =

1
2
x2uxx x, t , 0 < x < 1, t > 0, 0 < α ≤ 1, 13 17

with the boundary conditions (BCs):

u 0, t = 0, u 1, t = et, 13 18

and IC:

u x, 0 = x2 13 19

Solution

To solve Eqs. (13.17)–(13.19) using HAM, we chose the initial approximation as:

u0 x, t = u x, 0 = x2 13 20

Equation (13.17) suggests the nonlinear operator as:

FD ϕ x, t; p = Dα
t ϕ x, t; p −

1
2
x2ϕxx x, t; p , 13 21

and the linear operator:

L ϕ x, t; p = Dα
t ϕ x, t; p , 13 22

with the property L[c] = 0 where c is the integration constant. Using the aforementioned definition with the assumption
H(x, t) = 1, the zeroth-order deformation equation may be constructed as:

1− p L ϕ x, t; p − u0 x, t = pℏFD ϕ x, t; p 13 23

Obviously, at p = 0 and p = 1 in Eq. (13.23) gives

ϕ x, t; 0 = u0 x, t , and ϕ x, t; 1 = u x, t , 13 24

respectively. So, as p increases from 0 to 1, the solution ϕ(x, t; p) varies from the initial guess u0(x, t ) to the solution u(x, t ).
Now, the mth-order deformation equation can be written as:

L um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 13 25

where

Rm um− 1 x, t = Dα
t um− 1 x, t −

1
2
x2 um− 1 x, t xx 13 26
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The solution of mth-order deformation Eq. (13.25) for m ≥ 1 becomes

um x, t = χmum− 1 x, t + ℏJαt Rm um− 1 x, t 13 27

From Eqs. (13.20) and (13.27), we have

u0 x, t = x2, 13 28

u1 x, t = χ1u0 x, t + ℏJαt R1 u0 x, t = ℏJαt Dα
t u0 x, t −

1
2
x2 u0 x, t xx

= ℏJαt 0− x2 =
−ℏx2tα

Γ α + 1
,

13 29

u2 x, t = χ2u1 x, t + ℏJαt R2 u1 x, t =
−ℏx2tα

Γ α + 1
+ ℏJαt Dα

t u1 x, t −
1
2
x2 u1 x, t xx

=
−ℏx2tα

Γ α + 1
+ ℏJαt −ℏx2 +

ℏx2tα

Γ α + 1
=

−ℏx2tα

Γ α + 1
+ ℏ

−ℏx2tα

Γ α + 1
+

ℏx2t2α

Γ 2α + 1

=
− x2tα

Γ α + 1
ℏ ℏ + 1 +

ℏ2x2t2α

Γ 2α + 1
,

13 30

u3 x, t = χ3u2 x, t + ℏJαt R3 u2 x, t =
− x2tα

Γ α + 1
ℏ ℏ + 1 2

−
ℏ3x2t3α

Γ 3α + 1
, 13 31

and so on. Therefore, the four-term approximate solution of Eq. (13.17) is given by:

uHAM x, t =
3

i = 0

ui x, t 13 32

By substituting ℏ = − 1, the solution of the fractional heat-like equation may be obtained as:

u x, t = x2 + x2
tα

Γ 1 + α
+ x2

t2α

Γ 1 + 2α
+ x2

t3α

Γ 1 + 3α
+ ,

= x2 1 +
tα

Γ 1 + α
+

t2α

Γ 1 + 2α
+

t3α

Γ 1 + 3α
+ = x2E tα ,

13 33

where E(tα) is called the Mittag-Leffler function. In particular, at α = 1, Eq. (13.33) reduces to u(x, t) = x2et, which is same as
the solution of Sadighi et al. (2008). The third-order approximate solution plot is depicted in Figure 13.1 for ℏ= − 0.3,− 0.6,
− 0.9,− 1.0 at α= 1 and x= 1. In this figure, one may see the comparison of the present results with the exact solution. From
the results presented in Figure 13.1, we observe that at ℏ = − 1.0, the HAM solution is the same as the exact solution.

h = –0.3 h = –0.6 h = –0.9 h = –1 Exact

–0.4

1.4

1.3

1.2

1.1

u(
1,
t)

1.0

0.9

0.8

–0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4

0.7

t

Figure 13.1 Solution of Eq. (13.17) for different values of ℏ.
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Example 13.2 Consider the following nonlinear advection equation (Wazwaz 2007):

∂αu
∂tα

+ u
∂u
∂x

= 0, 0 < α ≤ 1, 13 34

with IC:

u x, 0 = − x 13 35

Solution

Here, we chose the initial approximation as;

u0 x, t = u x, 0 = − x 13 36

From Eq. (13.34), the nonlinear operator is written as:

FD ϕ x, t; p = Dα
t ϕ x, t; p + ϕ x, t; p ϕx x, t; p , 13 37

and the linear operator as:

L ϕ x, t; p = Dα
t ϕ x, t; p , 13 38

Using the aforementioned definition with an assumption H(x, t) = 1, the zeroth-order deformation equation can be con-
structed as:

1− p L ϕ x, t; p − u0 x, t = pℏFD ϕ x, t; p 13 39

The mth-order deformation equation is

L um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 13 40

where

Rm um− 1 x, t = Dα
t um− 1 x, t +

m− 1

k = 0

uk x, t um− 1− k x, t x 13 41

The solution of mth-order deformation Eq. (13.40) for m≥ 1 becomes

um x, t = χmum− 1 x, t + ℏJαt Rm um− 1 x, t 13 42

From Eqs. (13.36) and (13.42), we obtain

u0 x, t = − x, 13 43

u1 x, t = χ1u0 x, t + ℏJαt R1 u0 x, t = ℏJαt Dα
t u0 x, t + u0 x, t u0 x, t x

= ℏJαt 0 + − x − 1 =
ℏxtα

Γ α + 1
,

13 44

u2 x, t = χ2u1 x, t + ℏJαt R2 u1 x, t =
ℏxtα

Γ α + 1
+ ℏJαt

Dα
t u1 x, t + u0 x, t u1 x, t x +

u1 x, t u0 x, t x

=
ℏxtα

Γ α + 1
+ ℏJαt ℏx−

ℏxtα

Γ α + 1
−

ℏxtα

Γ α + 1
=

ℏxtα

Γ α + 1
+ ℏJαt ℏx−

2ℏxtα

Γ α + 1

=
ℏxtα

Γ α + 1
+ ℏ

ℏxtα

Γ α + 1
−

2ℏxt2α

Γ 2α + 1
=

xtα

Γ α + 1
ℏ2 + ℏ −

2ℏ2xt2α

Γ 2α + 1
,

13 45
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u3 x, t = χ3u2 x, t + ℏJαt R3 u2 x, t =
xtα

Γ α + 1
ℏ2 + ℏ −

2ℏ2xt2α

Γ 2α + 1
+ ℏJαt

Dα
t u2 x, t + u0 x, t u2 x, t x +

u1 x, t u1 x, t x + u2 x, t u0 x, t x

=
xtα

Γ α + 1
ℏ2 + ℏ −

2ℏ2xt2α

Γ 2α + 1
+ ℏJαt

tα

Γ α + 1
− 4xℏ2 − 2xℏ + x ℏ2 + ℏ +

xℏ2t2α

Γ α + 1 2 +
4ℏ2xt2α

Γ 2α + 1
=

xtα

Γ α + 1
2ℏ2 + ℏ + ℏ3 +

xt2α

Γ 2α + 1
− 4ℏ3 − 4ℏ2 +

xℏ3Γ 2α + 1 t3α

Γ α + 1 2Γ 3α + 1
+

4ℏ3xt3α

Γ 3α + 1

13 46

and so on. The fourth-order series solution of Eq. (13.34) by HAM can be written in the form:

uHAM x, t =
3

i = 0

ui x, t

or, especially when ℏ = − 1,

uHAM x, t = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
−… 13 47

Particularly at α = 1, Eq. (13.47) reduces to a solution u x, t =
x

t− 1
, which is same as the solution of Wazwaz (2007).

Figure 13.2 shows that the HAM solution converges to the exact solution at ℏ = − 1.0 for α = 1 and x = 1. It may be noted
that it is not always true to achieve a better result at ℏ= − 1.0. In this case, one may obtain a closed-form solution at ℏ = −

1.2. It can be concluded from the aforementioed discussion that the proper values of the control parameter ℏ should be
selected to provide better results with less errors. It is worth noting that the HAM produces not only the approximate con-
vergent series solution but also an exact solution depending on the considered problem with the proper ℏ value.

h = –0.1 h = –0.3 h = –1 h = –1.2 Exact

–0.4 –0.3 –0.2 –0.1

–0.7

0
t

0.1 0.2 0.3 0.4

u(
1,
t)

–0.8

–0.9

–1

–1.1

–1.2

–1.3

–1.4

–1.5

–1.6

Figure 13.2 Solution of Eq. (13.34) for different values of ℏ. Source: Based on Wazwaz (2007).
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14

Homotopy Analysis Transform Method

14.1 Introduction

A Chinese mathematician, Liao, proposed the homotopy analysis method (HAM) (Liao 2003, 2004) by using the basic def-
inition of differential geometry and topology. Homotopy analysis transform method (HATM) is a combination of HAM and
the different transform methods. This method monitors and manipulates the series solution, which converges easily to the
exact solution. As a result, several authors have recently studied different phenomena using HATM (Mohamed et al. 2014;
Saad and Al-Shomrani 2016; Ziane and Cherif 2017; Maitama and Zhao 2020; Saratha et al. 2020). The HAM takes a longer
time for computing and needs large computer memory. There has been a need to combine this approach with other trans-
formation techniques to reduce the computing time and overcome other limitations. This method provides powerful fea-
tures, including a nonlocal effect, a simple solution mechanism, a broad convergence region free from assumptions,
discretization, and perturbation. The HATM solution involves auxiliary parameters, ℏ, which helps us to adjust and control
the convergence of the series solution.

14.2 Transform Methods for the Caputo Sense Derivative

Definition 14.1 The Laplace transform of the Caputo fractional derivative is defined as (Baleanu and Jassim 2019):

L Dα
t u x, t = sαL u x, t −

n− 1

k = 0

s α− k− 1 u k x, 0 , n− 1 < α ≤ 1,n N 14 1

Definition 14.2 The Sumudu transform of the Caputo fractional derivative is defined as (Jena and Chakraverty 2019a):

S Dα
t u x, t = s− αS u x, t −

n− 1

k = 0

s− α + ku k x, 0 , n− 1 < α ≤ 1,n N 14 2

Definition 14.3 The Elzaki transform of the Caputo fractional derivative is defined as (Jena and Chakraverty 2019b):

E Dα
t u x, t =

E u x, t
sα

−
n− 1

k = 0

sk− α + 2u k x, 0 , n− 1 < α ≤ n, n N 14 3

Definition 14.4 The Aboodh transform of the Caputo fractional derivative is defined as (Aboodh 2013; Aboodh
et al. 2017):

A Dα
t u x, t = sαA u x, t −

n− 1

k = 0

s− k + α− 2u k x, 0 , n− 1 < α ≤ n, n N 14 4
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Table 14.1 shows the transformations of several standard functions with respect to the four transformation methods
described earlier, along with their definitions.
The following section addresses a systematic analysis of the homotopy analysis Laplace transform method (HALTM),

homotopy analysis Sumudu transform method (HASTM), homotopy analysis Elzaki transform method (HAETM), and
homotopy analysis Aboodh transform method (HAATM) methods.

14.3 Homotopy Analysis Laplace Transform Method (HALTM)

To illustrate the basic concept of HALTM, we consider the nonlinear nonhomogenous fractional partial differential equa-
tion (PDE) as follows (Saad and Al-Shomrani 2016):

Dα
t u x, t + Ru x, t + Nu x, t = h x, t ,n− 1 < α ≤ n, 14 5

where Dα
t is the Caputo fractional derivative, R and N are the linear and nonlinear differential operators, and h(x, t) is the

source term. Applying Laplace transform on both sides of Eq. (14.5) and using Eq. (14.1), we have

L u x, t =
n− 1

k = 0

s− k− 1u k x, 0 + s− αL h x, t −Ru x, t −Nu x, t 14 6

Let us define a nonlinear operator as:

N ϕ x, t; p = L ϕ x, t; p −
n− 1

k = 0

s− k− 1ϕ k x, t; p 0 + + s− αL
Rϕ x, t; p + Nϕ x, t; p

− h x, t
, 14 7

where p [0, 1] is the embedding parameter, and ϕ(x, t; p) is the unknown function. Constructing a homotopy, we get

1− p L ϕ x, t; p − u0 x, t = ℏpH x, t N ϕ x, t; p , 14 8

Table 14.1 Transforms of some essential functions.

Functions Laplace transform Sumudu transform Elzaki transform Aboodh transform

Definitions L f t = f s

=

∞

0

e− st f t dt

S g t = g s

=

∞

0

e− t f st dt

=
1
s
f

1
s

E h t = h s

= s

∞

0

e
− t
s f t dt

= sf
1
s

A p t = p s

=
1
s

∞

0

e− st f t dt

=
1
s
f s

1 1
s

1 s2 1
s2

tα Γ 1 + α

sα + 1

sαΓ(1 + α) sα+ 2Γ(1 + α) Γ 1 + α

sα + 2

eat 1
s− a

1
1− as

s2

1− as

1
s 1− s

sin(at) a
s2 + a2

as
1 + a2s2

as3

1 + a2s2

a
s s2 + a2

cos(at) s
s2 + a2

1
1 + s2a2

s
1 + s2a2

1
s2 + a2
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where H(x, t) represents the nonzero auxiliary function, ℏ 0 is an auxiliary parameter, and u0(x, t) is the initial value of
u(x, t).
If p = 0 and p = 1, then we obtain

φ x, t; 0 = u0 x, t , and φ x, t; 1 = u x, t , 14 9

respectively. As p increases from 0 to 1 then φ(x, t; p) varies from u0(x, t) to the solution of Eq. (14.5). Expanding φ(x, t; p) in
Taylor’s series with respect to p, we get

φ x, t; p = u0 x, t +
∞

m = 1

um x, t pm, 14 10

where

um x, t =
1
m

∂mu x, t; p
∂pm p = 0

14 11

If R, u0(x, t), H(x, t), and ℏ are properly chosen, then Eq. (14.10) converges at p = 1. So we have

u x, t = u0 x, t +
∞

m = 1

um x, t 14 12

Let us define the vector:

um t = u0 x, t ,u1 x, t ,…,…um x, t 14 13

Differentiating Eq. (14.8) m-times with respect to p, setting p = 0 and then dividing by m!, we have the mth-order defor-
mation equation (Liao 2003, 2004) as follows:

L um x, t − χmum− 1 x, t = ℏH x, t ℜm um− 1 x, t , 14 14

By applying inverse Laplace transform on both sides of Eq. (14.14), we obtain

um x, t = χmum− 1 x, t + L− 1 ℏH x, t ℜm um− 1 x, t , 14 15

where

ℜm um− 1 x, t =
1

m− 1
∂m− 1N φ x, t; p

∂pm− 1
p = 0

, 14 16

and

χm =
0, m ≤ 1,

1, m > 1
14 17

In this way, one can easily obtain um(x, t) for m≥ 1, which is written as:

u x, t =
m

i = 0

ui x, t 14 18

when m ∞ then, we get an exact approximation of the original Eq. (14.5).

14.4 Homotopy Analysis Sumudu Transform Method (HASTM)

Taking Sumudu transform on both sides of Eq. (14.5) and using Eq. (14.2), we have

S u x, t =
n− 1

k = 0

sku k x, 0 + sαS h x, t −Ru x, t −Nu x, t , 14 19

14.4 Homotopy Analysis Sumudu Transform Method (HASTM) 149



The nonlinear operator is

N φ x, t; p = S φ x, t; p −
n− 1

k = 0

skφ k x, t; p 0 + + sαS
Rφ x, t; p + Nφ x, t; p

− h x, t
14 20

Constructing the homotopy, we get

1− p S φ x, t; p − u0 x, t = ℏpH x, t N φ x, t; p 14 21

Substituting p = 0 and p = 1 in Eq. (14.21), we obtain Eq. (14.9). Using Taylor’s series expansion on φ(x, t; p), one may
get Eqs. (14.10) and (14.11). If R, u0(x, t), H(x, t), and ℏ are correctly chosen, then Eq. (14.10) converges at p = 1.
Let us define the vector Eq. (14.13). Differentiating Eq. (14.21) m-times with respect to p, setting p = 0 and then dividing

by m!, we have the mth-order deformation equation as follows:

S um x, t − χmum− 1 x, t = ℏH x, t ℜm um− 1 x, t , 14 22

By applying inverse Sumudu transform on both sides of Eq. (14.22), we obtain

um x, t = χmum− 1 x, t + S− 1 ℏH x, t ℜm um− 1 x, t , 14 23

with Eqs. (14.16) and (14.17).

14.5 Homotopy Analysis Elzaki Transform Method (HAETM)

Taking Elzaki transform on both sides of Eq. (14.5) and with the help of Eq. (14.3), we have

E u x, t =
n− 1

k = 0

sk + 2u k x, 0 + sαE h x, t −Ru x, t −Nu x, t , 14 24

Define the nonlinear operator as:

N φ x, t; p = E φ x, t; p −
n− 1

k = 0

sk + 2φ k x, t; p 0 + + sαE
Rφ x, t; p + Nφ x, t; p

− h x, t
, 14 25

The homotopy may be constructed as:

1− p E φ x, t; p − u0 x, t = ℏpH x, t N φ x, t; p 14 26

Let us define the vector Eq. (14.13). Differentiating Eq. (14.26)m-times with respect to p, setting p= 0 and then dividing by
m!, the mth-order deformation equation is obtained as follows:

E um x, t − χmum− 1 x, t = ℏH x, t ℜm um− 1 x, t 14 27

By applying inverse Elzaki transform on both sides of Eq. (14.27), we find

um x, t = χmum− 1 x, t + E− 1 ℏH x, t ℜm um− 1 x, t , 14 28

with Eqs. (14.16) and (14.17).

14.6 Homotopy Analysis Aboodh Transform Method (HAATM)

Applying Aboodh transform on both sides of Eq. (14.5) and using Eq. (14.4), we have

A u x, t =
n− 1

k = 0

s− k− 2u k x, 0 + s− αA h x, t −Ru x, t −Nu x, t , 14 29
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Define a nonlinear operator as:

N φ x, t; p = A φ x, t; p −
n− 1

k = 0

s− k− 2φ k x, t; p 0 + + s− αA
Rφ x, t; p + Nφ x, t; p

− h x, t
, 14 30

where p [0, 1], and φ(x, t; p) is the unknown function.
Constructing a homotopy, we get

1− p A φ x, t; p − u0 x, t = ℏpH x, t N φ x, t; p , 14 31

where H(x, t) represent the nonzero auxiliary function, ℏ 0 is an auxiliary parameter, and u0(x, t) is the initial value. If
p = 0 and p = 1 then, we obtain Eq. (14.9). As p increases from 0 to 1, then φ(x, t; p) varies from u0(x, t) to the solution of
Eq. (14.5). Using Taylor’s series expansion onφ(x, t; p), one obtains Eq. (14.10) with Eq. (14.11). IfR, u0(x, t),H(x, t), and ℏ are
properly chosen, then Eq. (14.10) converges at p = 1. So we get Eq. (14.12).
Let us define the vector Eq. (14.13). Differentiating Eq. (14.31) m-times with respect to p, setting p= 0 and then dividing by

m!, we have the mth-order deformation equation as:

A um x, t − χmum− 1 x, t = ℏH x, t ℜm um− 1 x, t , 14 32

Applying inverse Aboodh transform on both sides of Eq. (14.32), we obtain

um x, t = χmum− 1 x, t + A− 1 ℏH x, t ℜm um− 1 x, t , 14 33

with Eqs. (14.16) and (14.17).
Next, we solve two test problems to demonstrate the present methods.

14.7 Numerical Examples

14.7.1 Implementation of HALTM

Example 14.1 Let us consider the one-dimensional heat-like model (Özis and Agırseven 2008; Sadighi et al. 2008) as:

Dα
t u x, t =

1
2
x2uxx x, t , 0 < x < 1, t > 0, 0 < α ≤ 1, 14 34

with the boundary conditions:

u 0, t = 0, u 1, t = et , 14 35

and initial condition:

u x, 0 = x2 14 36

Solution

In order to solve Eqs. (14.34)–(14.36) using HALTM, we chose the initial approximation as:

u0 x, t = u x, 0 = x2 14 37

Applying Laplace transform on both sides of Eq. (14.34) and simplifying, we obtain

L u x, t =
x2

s
+

s− α

2
L x2

∂2u x, t
∂x2

14 38

The nonlinear operator may be written as:

N φ x, t; p = L φ x, t; p −
x2

s
1− χm −

s− α

2
L x2

∂2φ x, t; p
∂x2

14 39
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Now, the mth-order deformation equation with the assumption H(x, t) = 1 can be written as:

L um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 14 40

where

Rm um− 1 x, t = L um− 1 x, t −
x2

s
1− χm −

s− α

2
L x2

∂2um− 1 x, t
∂x2

14 41

Applying inverse Laplace transform in Eq. (14.40), we have

um x, t = χmum− 1 x, t + L− 1 ℏℜm um− 1 x, t 14 42

From Eqs. (14.37) and (14.42), we have

u0 x, t = x2, 14 43

u1 x, t = χ1u0 x, t + L− 1 ℏR1 u0 x, t =
−ℏx2tα

Γ α + 1
, 14 44

u2 x, t = χ2u1 x, t + L− 1 ℏR2 u1 x, t =
−ℏx2tα

Γ α + 1
+ ℏ

−ℏx2tα

Γ α + 1
+

ℏx2t2α

Γ 2α + 1

=
− x2tα

Γ α + 1
ℏ ℏ + 1 +

ℏ2x2t2α

Γ 2α + 1
,

14 45

u3 x, t = χ3u2 x, t + L− 1 ℏR3 u2 x, t =
− x2tα

Γ α + 1
ℏ ℏ + 1 2 +

x2t2α

Γ 1 + 2α
2ℏ2 1 + ℏ

−
ℏ3x2t3α

Γ 3α + 1

14 46

and so on. Therefore, the fourth-order approximate solution of Eq. (14.34) is given by:

uHALTM x, t;ℏ = u0 x, t;ℏ +
3

i = 1

ui x, t;ℏ 14 47

By substituting ℏ = − 1, the solution of the fractional heat-like equation may be obtained as:

u x, t = x2 + x2
tα

Γ 1 + α
+ x2

t2α

Γ 1 + 2α
+ x2

t3α

Γ 1 + 3α
+ ,

= x2 1 +
tα

Γ 1 + α
+

t2α

Γ 1 + 2α
+

t3α

Γ 1 + 3α
+ = x2E tα ,

14 48

where E(tα) is called the Mittag-Leffler function. In particular, at α = 1, Eq. (14.48) reduces to u(x, t) = x2et, which is same as
the solution of Sadighi et al. (2008).

Example 14.2 Consider the following nonlinear advection equation (Wazwaz 2007):

∂αu
∂tα

+ u
∂u
∂x

= 0, 0 < α ≤ 1, 14 49

with initial condition:

u x, 0 = − x 14 50

Solution

Here, we chose the initial approximation as:

u0 x, t = u x, 0 = − x 14 51
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Applying Laplace transform on both sides of Eq. (14.49) and simplifying, we obtain

L u x, t =
− x
s

−
1
sα
L u

∂u x, t
∂x

14 52

From Eq. (14.49), the nonlinear operator is written as:

N ϕ x, t; p = L ϕ x, t; p +
x
s
1− χm +

1
sα
L ϕ x, t; p

∂ϕ x, t; p
∂x

14 53

The mth-order deformation equation when H(x, t) = 1 is

L um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 14 54

where

Rm um− 1 x, t = L um− 1 x, t +
x
s
1− χm +

1
sα
L

m− 1

k = 0

uk x, t um− 1− k x, t x 14 55

Taking inverse Laplace transform on both sides of Eq. (14.54), we get

um x, t = χmum− 1 x, t + L− 1 ℏRm um− 1 x, t 14 56

Now, from Eq. (14.56) for m≥ 1, we find

u1 x, t = χ1u0 x, t + L− 1 ℏR1 u0 x, t =
ℏxtα

Γ α + 1
, 14 57

u2 x, t = χ2u1 x, t + L− 1 ℏR2 u1 x, t =
ℏxtα

Γ α + 1
+ ℏ

ℏxtα

Γ α + 1
−

2ℏxt2α

Γ 2α + 1

=
xtα

Γ α + 1
ℏ ℏ + 1 −

2ℏ2xt2α

Γ 2α + 1
,

14 58

u3 x, t = χ3u2 x, t + L− 1 ℏR3 u2 x, t =
xtα

Γ α + 1
ℏ ℏ + 1 2

−
4xt2α

Γ 2α + 1
ℏ2 ℏ + 1

+
xℏ3Γ 2α + 1 t3α

Γ α + 1 2Γ 3α + 1
+

4ℏ3xt3α

Γ 3α + 1
,

14 59

and so on. The fourth-order series solution of Eq. (14.49) by HALTM can be written in the form:

uHALTM x, t;ℏ = u0 x, t;ℏ +
3

i = 1

ui x, t;ℏ

or, especially when ℏ = − 1,

uHALTM x, t = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
− 14 60

Particularly at α = 1, Eq. (14.60) reduces to a solution u x, t =
x

t− 1
, which is same as the solution of Wazwaz (2007).

14.7.2 Implementation of HASTM

In order to solve Eqs. (14.34)–(14.36), let us choose the initial approximation as Eq. (14.37). Applying Sumudu transform on
both sides of Eq. (14.35) and substituting the initial condition, we obtain

S u x, t = x2 +
sα

2
S x2

∂2u x, t
∂x2

14 61
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The nonlinear operator is

N φ x, t; p = S φ x, t; p − x2 1− χm −
sα

2
S x2

∂2φ x, t; p
∂x2

14 62

Now, the mth-order deformation equation when H(x, t) = 1 can be written as:

S um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 14 63

where

Rm um− 1 x, t = S um− 1 x, t − x2 1− χm −
sα

2
S x2

∂2um− 1 x, t
∂x2

14 64

Applying inverse Sumudu transform on both sides of Eq. (14.63), it gives

um x, t = χmum− 1 x, t + S− 1 ℏℜm um− 1 x, t 14 65

From Eqs. (14.37) and (14.65), we have

u0 x, t = x2, 14 66

u1 x, t = χ1u0 x, t + S− 1 ℏR1 u0 x, t =
−ℏx2tα

Γ α + 1
, 14 67

u2 x, t = χ2u1 x, t + S− 1 ℏR2 u1 x, t =
−ℏx2tα

Γ α + 1
+ ℏ

−ℏx2tα

Γ α + 1
+

ℏx2t2α

Γ 2α + 1

=
− x2tα

Γ α + 1
ℏ ℏ + 1 +

ℏ2x2t2α

Γ 2α + 1
,

14 68

u3 x, t = χ3u2 x, t + S− 1 ℏR3 u2 x, t =
− x2tα

Γ α + 1
ℏ ℏ + 1 2 +

x2t2α

Γ 1 + 2α
2ℏ2 1 + ℏ

−
ℏ3x2t3α

Γ 3α + 1

14 69

and so on. Therefore, the fourth-order approximate solution of Eq. (14.34) is given by:

uHASTM x, t;ℏ = u0 x, t;ℏ +
3

i = 1

ui x, t;ℏ 14 70

By substituting ℏ = − 1, the solution of Eq. (14.34) may be written as:

u x, t = x2 1 +
tα

Γ 1 + α
+

t2α

Γ 1 + 2α
+

t3α

Γ 1 + 3α
+ = x2E tα 14 71

where E(tα) is called the Mittag-Leffler function. In particular, at α = 1, Eq. (14.71) reduces to u(x, t) = x2et, which is same as
the solution of Sadighi et al. (Sadighi et al. 2008).
Further, taking Sumudu transform on both sides of Eq. (14.49) and simplifying, we have

S u x, t = − x− sαS u
∂u x, t

∂x
14 72

From Eq. (14.49), the nonlinear operator is written as:

N ϕ x, t; p = S ϕ x, t; p + x 1− χm + sαS ϕ x, t; p
∂ϕ x, t; p

∂x
14 73

The mth-order deformation equation with the assumption H(x, t) = 1 is Eq. (14.63),

where

Rm um− 1 x, t = S um− 1 x, t + x 1− χm + sαS
m− 1

k = 0

uk x, t um− 1− k x, t x 14 74

154 14 Homotopy Analysis Transform Method



Taking inverse Sumudu transform on Eq. (14.63), it gives Eq. (14.65).
Now, from Eqs. (14.51) and (14.65) for m ≥ 1, we find

u0 x, t = − x, 14 75

u1 x, t =
ℏxtα

Γ α + 1
, 14 76

u2 x, t =
ℏxtα

Γ α + 1
+ ℏ

ℏxtα

Γ α + 1
−

2ℏxt2α

Γ 2α + 1
=

xtα

Γ α + 1
ℏ ℏ + 1 −

2ℏ2xt2α

Γ 2α + 1
, 14 77

u3 x, t =
xtα

Γ α + 1
ℏ ℏ + 1 2

−
4xt2α

Γ 2α + 1
ℏ2 ℏ + 1 +

xℏ3Γ 2α + 1 t3α

Γ α + 1 2Γ 3α + 1
+

4ℏ3xt3α

Γ 3α + 1
, 14 78

and so on. The fourth-order series solution is written in the form:

uHASTM x, t;ℏ = u0 x, t;ℏ +
3

i = 1

ui x, t;ℏ 14 79

or, especially when ℏ = − 1,

uHASTM x, t = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
−… 14 80

Particularly at α = 1, Eq. (14.80) reduces to a solution u x, t =
x

t− 1
, which is same as the solution of Wazwaz (2007).

14.7.3 Implementation of HAETM

To solve Eqs. (14.34)–(14.36), we take the initial approximation as:

u0 x, t = u x, 0 = x2 14 81

Applying Elzaki transform on both sides of Eq. (14.34) and using Eq. (14.81), we get

E u x, t = x2s2 +
sα

2
E x2

∂2u x, t
∂x2

14 82

The nonlinear operator may be written as:

N φ x, t; p = E φ x, t; p − x2s2 1− χm −
sα

2
E x2

∂2φ x, t; p
∂x2

14 83

Now, the mth-order deformation equation with the assumption H(x, t) = 1 may be written as:

E um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 14 84

where

Rm um− 1 x, t = E um− 1 x, t − x2s2 1− χm −
sα

2
E x2

∂2um− 1 x, t
∂x2

14 85

Applying inverse Elzaki transform on both sides of Eq. (14.84), we have

um x, t = χmum− 1 x, t + E− 1 ℏℜm um− 1 x, t 14 86

From Eqs. (14.81) and (14.86), we have

u0 x, t = x2, 14 87

u1 x, t = χ1u0 x, t + E− 1 ℏR1 u0 x, t =
−ℏx2tα

Γ α + 1
, 14 88
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u2 x, t = χ2u1 x, t + E− 1 ℏR2 u1 x, t =
−ℏx2tα

Γ α + 1
+ ℏ

−ℏx2tα

Γ α + 1
+

ℏx2t2α

Γ 2α + 1

=
− x2tα

Γ α + 1
ℏ ℏ + 1 +

ℏ2x2t2α

Γ 2α + 1
,

14 89

u3 x, t = χ3u2 x, t + E− 1 ℏR3 u2 x, t =
− x2tα

Γ α + 1
ℏ ℏ + 1 2 +

x2t2α

Γ 1 + 2α
2ℏ2 1 + ℏ

−
ℏ3x2t3α

Γ 3α + 1
,

14 90

and so on. Therefore, the fourth-order approximate solution of Eq. (14.34) is given by:

uHAETM x, t;ℏ = u0 x, t;ℏ +
3

i = 1

ui x, t;ℏ 14 91

By substituting ℏ = − 1, the solution of the fractional heat-like equation may be obtained as:

u x, t = x2 1 +
tα

Γ 1 + α
+

t2α

Γ 1 + 2α
+

t3α

Γ 1 + 3α
+ = x2E tα 14 92

when α = 1, Eq. (14.92) reduces to u(x, t) = x2et, which is same as the solution of Sadighi et al. (2008).
Again, applying Elzaki transform on both sides of Eq. (14.49) and using Eq. (14.51), we obtain

E u x, t = − xs2 − sαE u
∂u x, t

∂x
14 93

From Eq. (14.49), the nonlinear operator is written as:

N ϕ x, t; p = E ϕ x, t; p + xs2 1− χm + sαE ϕ x, t; p
∂ϕ x, t; p

∂x
14 94

The mth-order deformation equation when H(x, t) = 1 is

E um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 14 95

where

Rm um− 1 x, t = E um− 1 x, t + xs2 1− χm + sαE
m− 1

k = 0

uk x, t um− 1− k x, t x 14 96

Taking inverse Elzaki transform on both sides of Eq. (14.95), we get

um x, t = χmum− 1 x, t + E− 1 ℏRm um− 1 x, t 14 97

Now, from Eqs. (14.97) and (14.51) for m≥ 1, the following expressions are obtained as:

u0 x, t = − x, 14 98

u1 x, t =
ℏxtα

Γ α + 1
, 14 99

u2 x, t =
ℏxtα

Γ α + 1
+ ℏ

ℏxtα

Γ α + 1
−

2ℏxt2α

Γ 2α + 1
=

xtα

Γ α + 1
ℏ ℏ + 1 −

2ℏ2xt2α

Γ 2α + 1
, 14 100

u3 x, t =
xtα

Γ α + 1
ℏ ℏ + 1 2

−
4xt2α

Γ 2α + 1
ℏ2 ℏ + 1 +

xℏ3Γ 2α + 1 t3α

Γ α + 1 2Γ 3α + 1
+

4ℏ3xt3α

Γ 3α + 1
, 14 101

and so on. The fourth-order series solution of Eq. (14.49) by HAETM can be written in the form:

uHAETM x, t;ℏ = u0 x, t;ℏ +
3

i = 1

ui x, t;ℏ 14 102
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or, especially when ℏ = − 1,

uHAETM x, t = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
−… 14 103

Particularly at α = 1, Eq. (14.103) reduces to a solution u x, t =
x

t− 1
, which is same as the solution of Wazwaz (2007).

14.7.4 Implementation of HAATM

To solve Eqs. (14.34)–(14.36) using HAATM, we have taken the initial approximation as:

u0 x, t = u x, 0 = x2 14 104

Applying Aboodh transform on both sides of Eq. (14.34) and using initial approximation Eq. (14.104), we get

A u x, t =
x2

s2
+

s− α

2
A x2

∂2u x, t
∂x2

14 105

The nonlinear operator is obtained as:

N φ x, t; p = A φ x, t; p −
x2

s2
1− χm −

s− α

2
A x2

∂2φ x, t; p
∂x2

14 106

Now, the mth-order deformation equation for H(x, t) = 1 may be written as:

A um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 14 107

where

Rm um− 1 x, t = A um− 1 x, t −
x2

s2
1− χm −

s− α

2
A x2

∂2um− 1 x, t
∂x2

14 108

Applying inverse Aboodh transform, Eq. (14.107) reduces to

um x, t = χmum− 1 x, t + A− 1 ℏℜm um− 1 x, t 14 109

From Eqs. (14.109) for m≥ 1, the following expressions are obtained:

u1 x, t = χ1u0 x, t + A− 1 ℏR1 u0 x, t =
−ℏx2tα

Γ α + 1
, 14 110

u2 x, t = χ2u1 x, t + A− 1 ℏR2 u1 x, t =
−ℏx2tα

Γ α + 1
+ ℏ

−ℏx2tα

Γ α + 1
+

ℏx2t2α

Γ 2α + 1

=
− x2tα

Γ α + 1
ℏ ℏ + 1 +

ℏ2x2t2α

Γ 2α + 1
,

14 111

u3 x, t = χ3u2 x, t + A− 1 ℏR3 u2 x, t =
− x2tα

Γ α + 1
ℏ ℏ + 1 2 +

x2t2α

Γ 1 + 2α
2ℏ2 1 + ℏ

−
ℏ3x2t3α

Γ 3α + 1
,

14 112

and so on. Hence, the fourth-order approximate solution of Eq. (14.34) is given by:

uHAATM x, t;ℏ = u0 x, t;ℏ +
3

i = 1

ui x, t;ℏ 14 113

By substituting ℏ = − 1, the solution of the fractional heat-like equation is obtained as:

u x, t = x2 1 +
tα

Γ 1 + α
+

t2α

Γ 1 + 2α
+

t3α

Γ 1 + 3α
+ … = x2E tα , 14 114
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when α = 1, Eq. (14.114) reduces to u(x, t) = x2et, which is same as the solution of Sadighi et al. (2008).
Further, applying Aboodh transform on both sides of Eq. (14.49) and using Eq. (14.51), we obtain

A u x, t = −
x
s2

− s− αA u
∂u x, t

∂x
14 115

From Eq. (14.49), the nonlinear operator is written as:

N ϕ x, t; p = A ϕ x, t; p +
x
s2

1− χm + s− αA ϕ x, t; p
∂ϕ x, t; p

∂x
14 116

The mth-order deformation equation when H(x, t) = 1 is

A um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 14 117

where

Rm um− 1 x, t = A um− 1 x, t +
x
s2

1− χm + s− αA
m− 1

k = 0

uk x, t um− 1− k x, t x 14 118

Taking inverse Aboodh transform on both sides of Eq. (14.117), we get

um x, t = χmum− 1 x, t + A− 1 ℏRm um− 1 x, t 14 119

Now, from Eqs. (14.51) and (14.119), the expressions are obtained as follows:

u0 x, t = − x, 14 120

u1 x, t =
ℏxtα

Γ α + 1
, 14 121

u2 x, t =
ℏxtα

Γ α + 1
+ ℏ

ℏxtα

Γ α + 1
−

2ℏxt2α

Γ 2α + 1
=

xtα

Γ α + 1
ℏ ℏ + 1 −

2ℏ2xt2α

Γ 2α + 1
, 14 122

u3 x, t =
xtα

Γ α + 1
ℏ ℏ + 1 2

−
4xt2α

Γ 2α + 1
ℏ2 ℏ + 1 +

xℏ3Γ 2α + 1 t3α

Γ α + 1 2Γ 3α + 1
+

4ℏ3xt3α

Γ 3α + 1
, 14 123

and so on. The fourth-order series solution of Eq. (14.49) by HAATM can be written in the form:

uHAATM x, t;ℏ = u0 x, t;ℏ +
3

i = 1

ui x, t;ℏ 14 124

or, especially when ℏ = − 1,

uHAATM x, t = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
−… 14 125

Particularly at α = 1, Eq. (14.125) reduces to a solution u x, t =
x

t− 1
, which is same as the solution of Wazwaz (2007).
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15

q-Homotopy Analysis Method

15.1 Introduction

Chapter 13 has already discussed the homotopy analysis method (HAM), which is based on the coupling of the standard
perturbation approach and homotopy in topology. This approach uses the auxiliary parameter ℏ, which gives us some ver-
satility and great freedom to monitor and adjust the convergence region, including the convergence rate of the series solu-
tion. Subsequently, El-Tawil and Huseen in 2012 (El-Tawil and Huseen 2012) introduced an improvement to the HAM,
which is called the q-HAM. The q-HAM is later used by Iyiola et al. (2013) to obtain a solution for the time-fractional foams
drainage equation. Iyiola (2013) constructed the numerical solution of the fifth-order time-fractional Ito and Sawada–Kotera
equations using q-HAM. The convergence of q-HAM was considered in El-Tawil and Huseen (2013). This method includes
two auxiliary parameters n and ℏ which helps us to adjust and control the convergence of the solution. It may be noted that
the standard HAM is obtained by replacing n = 1 in the q-HAM. It is already mentioned that q-HAM is an improved HAM
scheme and does not require discretization, perturbation, or linearization. The introduction of the additional parameter n in
the q-HAM provides greater flexibility than the HAM in adjusting and controlling the convergence region and the conver-
gence rate of the series solution. Several authors have recently used q-HAM to solve (integer and non-integer) linear and
nonlinear differential equations due to its accuracy and usefulness (Soh et al. 2014; Huseen 2015; Iyiola 2015; Huseen 2016;
Iyiola 2016). Compared to other approaches, this method can retain great accuracy while minimizing computational time.

15.2 Theory of q-HAM

To demonstrate the elementary idea of the q-HAM, let us consider the nonlinear fractional differential equation as follows
(Akinyemi 2019):

ℵ Dα
t u x, t − f x, t = 0, x, t Ω, 15 1

whereDα
t is the Caputo fractional derivative,ℵ denotes nonlinear operator, u(x, t) is the unknown function in the domainΩ,

and f (x, t) is the given function. Generalizing the traditional homotopy method (Liao 2003), the zero-order deformation
equation is constructed and can be written as (Akinyemi 2019):

1−np L ϕ x, t; p −u0 x, t = pℏH x, t ℵ Dα
t ϕ x, t; p − f x, t , 15 2

for 0 ≤ p ≤
1
n
,n ≥ 1,

where p is the embedding parameter, ℏ 0 is a nonzero auxiliary parameter, H(x, t) 0 is a nonzero auxiliary function,
u0(x, t) is the initial condition of u(x, t), ϕ(x, t; p) is the unknown function, and L denotes an auxiliary linear operator.

By substituting p = 0 and p =
1
n
in Eq. (15.2), we obtain

ϕ x, t; 0 = u0 x, t , and ϕ x, t;
1
n

= u x, t 15 3

respectively. Thus, as p rises from 0 to 1/n, the solution ϕ(x, t; p) ranges from initial guess u0(x, t ) to the solution u(x, t ). If L,

u0(x, t), ℏ, andH(x, t) 0 are appropriately chosen and then the solution ϕ(x, t; p) in Eq. (15.2) is valid as long as 0 ≤ p ≤
1
n
.

Expanding ϕ(x, t; p) using Taylor’s series expansion with respect to p, we have
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ϕ x, t; p = u0 x, t +
∞

m = 1

um x, t pm, 15 4

where

um x, t =
1
m

∂mφ x, t; p
∂pm p = 0

15 5

If we chose L, u0(x, t), ℏ, and H(x, t) correctly so that Eq. (15.4) converges at p =
1
n
. Now from Eq. (15.3), we get

u x, t = u0 x, t +
∞

m = 1

um x, t
1
n

m

15 6

Now let us define the vector as:

uω = u0 x, t , u1 x, t ,…, uω x, t 15 7

Differentiating Eq. (15.2) m times with respect to p, putting p = 0 and then dividing them by m!, we obtain themth-order
deformation equation with the assumption H(x, t) = 1 as follows (Liao 2003; Akinyemi 2019):

L um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 15 8

subject to the following initial conditions:

u k
m x, 0 = 0, k = 0, 1, 2,…,m− 1, 15 9

where

Rm um− 1 x, t =
1

m− 1

∂m− 1 ℵ Dα
t ϕ x, t; p − f x, t

∂pm− 1
p = 0

, 15 10

and

χm =
0, m ≤ 1

n, m > 1
15 11

Applying an integral operator L−1 on both sides of Eq. (15.8), we find

L− 1L um x, t − χmum− 1 x, t = ℏL− 1Rm um− 1 x, t ,

um x, t = χmum− 1 x, t + ℏL− 1Rm um− 1 x, t
15 12

The mth-order approximate solution is then written as:

u x, t = u0 x, t +
m− 1

k = 1

uk x, t
1
n

m

15 13

Theorem 15.1 Amit and Hardish (2017) If we can find 0 < c< 1 where c is a constant such that um+ 1(x, t) ≤ c um(x,

t) m. Furthermore, if the series
r

m = 1
um x, t

1
n

m

is assumed as an approximate solution of u(x, t), then the maximum

absolute truncated error is written as:

u x, t −
r

m = 0

um x, t
1
n

m

≤
cr + 1

nr n− c
u0 x, t 15 14

Proof: One may see the proof of this theorem in Amit and Hardish (2017).
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15.3 Illustrative Examples

Here, we apply the present method to solve a time-fractional one-dimensional heat-like equation in Example 15.1 and a
fractional nonlinear advection equation in Example 15.2.

Example 15.1 Let us consider the one-dimensional heat-like model (Özis and Agırseven 2008; Sadighi et al. 2008) as:

Dα
t u x, t =

1
2
x2uxx x, t , 0 < x < 1, t > 0, 0 < α ≤ 1, 15 15

with the boundary conditions (BCs):

u 0, t = 0, u 1, t = et , 15 16

and initial condition:

u x, 0 = x2 15 17

Solution

To solve Eqs. (15.15)–(15.17) using q-HAM, we chose the initial approximation as:

u0 x, t = u x, 0 = x2 15 18

Equation (15.15) suggests the nonlinear operator as:

ℵ ϕ x, t; p = Dα
t ϕ x, t; p −

1
2
x2ϕxx x, t; p , 15 19

and the linear operator:

L ϕ x, t; p = Dα
t ϕ x, t; p , 15 20

with the property L[c] = 0 where c is the integration constant. Using the aforementioned definition with the assumption
H(x, t) = 1, the zeroth-order deformation equation may be constructed as (Akinyemi 2019):

1−np L ϕ x, t; p −u0 x, t = pℏℵ ϕ x, t; p 15 21

Obviously, at p = 0 and p = 1
n in Eq. (15.21) gives

ϕ x, t; 0 = u0 x, t , and ϕ x, t;
1
n

= u x, t , 15 22

respectively. So, as p increases from 0 to
1
n
, the solution ϕ(x, t; p) varies from the initial guess u0(x, t ) to the solution

u(x, t ). Now, the mth-order deformation equation can be written as:

L um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 15 23

where

Rm um− 1 x, t = Dα
t um− 1 x, t −

1
2
x2 um− 1 x, t xx 15 24

The solution of mth-order deformation Eq. (15.23) for m≥ 1 becomes

um x, t = χmum− 1 x, t + ℏJαt Rm um− 1 x, t 15 25

From Eqs. (15.18) and (15.25), we have

u0 x, t = x2, 15 26
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u1 x, t = χ1u0 x, t + ℏJαt R1 u0 x, t = ℏJαt Dα
t u0 x, t −

1
2
x2 u0 x, t xx

= ℏJαt 0− x2 =
−ℏx2tα

Γ α + 1
,

15 27

u2 x, t = χ2u1 x, t + ℏJαt R2 u1 x, t =
−nℏx2tα

Γ α + 1
+ ℏJαt Dα

t u1 x, t −
1
2
x2 u1 x, t xx

=
−nℏx2tα

Γ α + 1
+ ℏJαt −ℏx2 +

ℏx2tα

Γ α + 1
=

− nℏx2tα

Γ α + 1
+ ℏ

−ℏx2tα

Γ α + 1
+

ℏx2t2α

Γ 2α + 1

=
− x2tα

Γ α + 1
ℏ ℏ + n +

ℏ2x2t2α

Γ 2α + 1
,

15 28

u3 x, t = χ3u2 x, t + ℏJαt R3 u2 x, t =
− x2tα

Γ α + 1
ℏ ℏ + n 2 +

x2t2α

Γ 1 + 2α
2ℏ2 n + ℏ

−
ℏ3x2t3α

Γ 3α + 1

15 29

and so on. Therefore, the four-term approximate solution of Eq. (15.15) is given by:

uq−HAM x, t; n,ℏ = u0 x, t; n,ℏ +
3

i = 1

ui x, t; n,ℏ
1
n

i

15 30

By substituting ℏ = − 1 and n = 1, the solution of the fractional heat-like equation may be obtained as:

u x, t = x2 + x2
tα

Γ 1 + α
+ x2

t2α

Γ 1 + 2α
+ x2

t3α

Γ 1 + 3α
+ …… ,

= x2 1 +
tα

Γ 1 + α
+

t2α

Γ 1 + 2α
+

t3α

Γ 1 + 3α
+ … = x2E tα ,

15 31

where E(tα) is called the Mittag-Leffler function. In particular, at α = 1, Eq. (15.31) reduces to u(x, t) = x2et, which is same as
the solution of Sadighi et al. (Sadighi et al. 2008). The third-order approximate solution plot is depicted in Figure 15.1 for
ℏ = − 0.3,− 0.6,− 0.9,− 1.0 at α = 1, n = 1 and x= 1. In this figure, one may see the comparison of the present results with
the exact solution. From the results presented in Figure 15.1, we observe that at ℏ = − 1.0 and n= 1, the q-HAM solution is
the same as the exact solution.

h = –0.3 h = –0.6 h = –0.9 h = –1 Exact

–0.4 –0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4
t

1.4

1.3

1.2

1.1

u(
1,
t)

1.0

0.9

0.8

0.7

Figure 15.1 Solution of Eq. (15.15) for different values of ℏ.
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Example 15.2 Consider the following nonlinear advection equation (Wazwaz 2007):

∂αu
∂tα

+ u
∂u
∂x

= 0, 0 < α ≤ 1, 15 32

with initial condition:

u x, 0 = − x 15 33

Solution

Here, we chose the initial approximation as:

u0 x, t = u x, 0 = − x 15 34

From Eq. (15.32), the nonlinear operator is written as:

ℵ ϕ x, t; p = Dα
t ϕ x, t; p + ϕ x, t; p ϕx x, t; p , 15 35

and the linear operator as:

L ϕ x, t; p = Dα
t ϕ x, t; p , 15 36

Using the aforementioned definition with an assumption H(x, t) = 1, the zeroth-order deformation equation can be con-
structed as (Akinyemi 2019):

1−np L ϕ x, t; p −u0 x, t = pℏℵ ϕ x, t; p 15 37

The mth-order deformation equation is

L um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 15 38

where

Rm um− 1 x, t = Dα
t um− 1 x, t +

m− 1

k = 0

uk x, t um− 1− k x, t x 15 39

The solution of mth-order deformation Eq. (15.38) for m≥ 1 becomes

um x, t = χmum− 1 x, t + ℏJαt Rm um− 1 x, t 15 40

From Eqs. (15.34) and (15.40), we obtain

u0 x, t = − x, 15 41

u1 x, t = χ1u0 x, t + ℏJαt R1 u0 x, t = ℏJαt Dα
t u0 x, t + u0 x, t u0 x, t x

= ℏJαt 0 + − x − 1 =
ℏxtα

Γ α + 1
,

15 42

u2 x, t = χ2u1 x, t + ℏJαt R2 u1 x, t =
nℏxtα

Γ α + 1
+ ℏJαt

Dα
t u1 x, t + u0 x, t u1 x, t x +

u1 x, t u0 x, t x

=
nℏxtα

Γ α + 1
+ ℏJαt ℏx−

ℏxtα

Γ α + 1
−

ℏxtα

Γ α + 1
=

nℏxtα

Γ α + 1
+ ℏJαt ℏx−

2ℏxtα

Γ α + 1

=
nℏxtα

Γ α + 1
+ ℏ

ℏxtα

Γ α + 1
−

2ℏxt2α

Γ 2α + 1
=

xtα

Γ α + 1
ℏ ℏ + n −

2ℏ2xt2α

Γ 2α + 1
,

15 43
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u3 x, t = χ3u2 x, t + ℏJαt R3 u2 x, t =
xtα

Γ α + 1
n ℏ2 + ℏn −

2ℏ2xnt2α

Γ 2α + 1
+ ℏJαt

Dα
t u2 x, t + u0 x, t u2 x, t x +

u1 x, t u1 x, t x + u2 x, t u0 x, t x

=
xtα

Γ α + 1
ℏ ℏ + n 2

−
4xt2α

Γ 2α + 1
ℏ2 ℏ + n

+
xℏ3Γ 2α + 1 t3α

Γ α + 1 2Γ 3α + 1
+

4ℏ3xt3α

Γ 3α + 1
,

15 44

and so on. The fourth-order series solution of Eq. (15.32) by q-HAM can be written in the form:

uq−HAM x, t; n,ℏ = u0 x, t; n,ℏ +
3

i = 1

ui x, t; n,ℏ
1
n

i

or, especially when ℏ = − 1 and n = 1,

uq−HAM x, t = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
− 15 45

Particularly at α = 1, Eq. (15.45) reduces to a solution u x, t =
x

t− 1
, which is same as the solution of Wazwaz (2007).

Figure 15.2 shows that the q-HAM solution converges to the exact solution at ℏ = − 1.0 for α = 1, n= 1 and x = 1. It may be
noted that it is not always true to achieve a better result at ℏ = − 1.0, n = 1. In this case, one may obtain a closed-form
solution at ℏ = − 1.2, n = 1. It can be concluded from the aforementioned discussion that the proper values of the control
parameter ℏ should be selected to provide better results with less errors. It is worth mentioning that the q-HAM produces
not only the approximate convergent series solution but also an exact solution depending on the considered problem with
the proper ℏ value.
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16

q-Homotopy Analysis Transform Method

16.1 Introduction

A Chinese mathematician, Liao, proposed the homotopy analysis method (HAM) (Liao 2003, 2004) by employing the
fundamental concept of differential geometry and topology. HAM has recently been used effectively to obtain solutions
to problems in various fields of science and technology. In accordance with this, the q-homotopy analysis transformmethod
(q-HATM) was developed, which is a combination of q-HAM and the different transform methods. This method monitors
andmanipulates the series solution, which converges to the exact solution. As a result, several authors have recently studied
different phenomena using q-HATM (Srivastava et al. 2017; Jena and Chakraverty 2019; Veeresha et al. 2019; Jena et al.
2020; Veeresha and Prakasha 2020). The HAM takes longer for computing and large computer memory. There has been a
need to integrate this technique with transformation techniques to address these limitations. The present method has many
strong properties, including a nonlocal effect, a simple solution procedure, a broad convergence region free from assump-
tions, discretization, and perturbation. It is worth mentioning that the transform methods with semi-analytical techniques
require less CPU time to evaluate the solutions for nonlinear fractional complex models. Again, the q-HATM solution
involves two auxiliary parameters, n and ℏ, which help us to adjust and control the convergence of the solution.

16.2 Transform Methods for the Caputo Sense Derivative

Definition 16.1 The Laplace transform of the Caputo fractional derivative is defined as (Baleanu and Jassim 2019):

L Dα
t u x, t = sαL u x, t −

n− 1

k = 0

s α− k− 1 u k x, 0 , n− 1 < α ≤ 1, n N 16 1

Definition 16.2 The Sumudu transform of the Caputo fractional derivative is defined as (Jena and Chakraverty 2019):

S Dα
t u x, t = s− αS u x, t −

n− 1

k = 0

s− α + ku k x, 0 , n− 1 < α ≤ 1, n N 16 2

Definition 16.3 The Elzaki transform of the Caputo fractional derivative is defined as (Jena and Chakraverty 2019):

E Dα
t u x, t =

E u x, t
sα

−
n− 1

k = 0

sk− α + 2u k x, 0 , n− 1 < α ≤ n, n N 16 3

Definition 16.4 The Aboodh transform of the Caputo fractional derivative is defined as (Aboodh 2013; Aboodh
et al. 2017):

A Dα
t u x, t = sαA u x, t −

n− 1

k = 0

s− k + α− 2u k x, 0 , n− 1 < α ≤ n, n N 16 4
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In view of the above, Table 16.1 is included, which shows the transforms of some standard functions with respect to the
aforementioned four transform methods and their definitions.
Following section deals with the systematic study of four hybridmethods, namely q-homotopy analysis Laplace transform

method (q-HALTM), q-homotopy analysis Sumudu transform method (q-HASTM), q-homotopy analysis Elzaki transform
method (q-HAETM), and q-homotopy analysis Aboodh transform method (q-HAATM), one after another.

16.3 q-Homotopy Analysis Laplace Transform Method (q-HALTM)

To illustrate the basic concept of q-HALTM, we consider the nonlinear nonhomogenous fractional partial differential equa-
tion (PDE) as follows (Jena et al. 2020):

Dα
t u x, t + Ru x, t + Nu x, t = h x, t , n− 1 < α ≤ n, 16 5

where Dα
t is the Caputo fractional derivative, R and N are the linear and nonlinear differential operator, respectively, and h

(x, t) is the source term. Applying Laplace transform on both sides of Eq. (16.5) and using Eq. (16.1), we have

L u x, t =
n− 1

k = 0

s− k− 1u k x, 0 + s− αL h x, t −Ru x, t −Nu x, t , 16 6

Define a nonlinear operator as:

N φ x, t; p = L φ x, t; p −
n− 1

k = 0

s− k− 1φ k x, t; p 0 + + s− αL
Rφ x, t; p + Nφ x, t; p

− h x, t
, 16 7

where p 0,
1
n

is the embedding parameter, and φ(x, t; p) is the unknown function. Constructing a homotopy, we get

1− np L φ x, t; p −u0 x, t = ℏpH x, t N φ x, t; p , 16 8

where H(x, t) represent the nonzero auxiliary function, ℏ 0 is an auxiliary parameter, and u0(x, t) is the initial value
of u(x, t).

If p = 0 and p =
1
n
then we obtain

Table 16.1 Transforms of some essential functions.

Functions Laplace transform Sumudu transform Elzaki transform Aboodh transform

Definitions L f t = f s

=

∞

0

e− st f t dt

S g t = g s

=

∞

0

e− t f st dt

=
1
s
f

1
s

E h t = h s

= s

∞

0

e
− t
s f t dt

= sf
1
s

A p t = p s

=
1
s

∞

0

e− st f t dt

=
1
s
f s

1 1
s

1 s2 1
s2

tα Γ 1 + α

sα + 1

sαΓ(1 + α) sα+ 2Γ(1 + α) Γ 1 + α

sα + 2

eat 1
s− a

1
1− as

s2

1− as

1
s 1− s

sin(at) a
s2 + a2

as
1 + a2s2

as3

1 + a2s2

a
s s2 + a2

cos(at) s
s2 + a2

1
1 + s2a2

s
1 + s2a2

1
s2 + a2
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φ x, t; 0 = u0 x, t , and φ x, t;
1
n

= u x, t , 16 9

respectively. As p increases from 0 to
1
n
then φ(x, t; p) varies from u0(x, t) to the solution of Eq. (16.5). Using Taylor’s series

expansion on φ(x, t; p), one has

φ x, t; p = u0 x, t +
∞

m = 1

um x, t pm, 16 10

where

um x, t =
1
m

∂mu x, t; p
∂pm p = 0

, 16 11

If R, u0(x, t), H(x, t), and ℏ are properly chosen, then Eq. (16.10) converges at p =
1
n
. So we have

u x, t = u0 x, t +
∞

m = 1

um x, t
1
n

m

16 12

Let us define the vector:

um = u0,u1,…,…um 16 13

Differentiating Eq. (16.8) m-times with respect to p, setting p= 0 and then divideding by m!, we have themth-order defor-
mation equation (Liao 2003; Liao 2004) as follows:

L um x, t − χmum− 1 x, t = ℏH x, t ℜm um− 1 x, t , 16 14

By applying inverse Laplace transform on both sides of Eq. (16.14), we obtain

um x, t = χmum− 1 x, t + L− 1 ℏH x, t ℜm um− 1 x, t , 16 15

where

ℜm um− 1 x, t =
1

m− 1
∂m− 1N φ x, t; p

∂pm− 1
p = 0

, 16 16

and

χm =
0, m ≤ 1,

n, m > 1
16 17

16.4 q-Homotopy Analysis Sumudu Transform Method (q-HASTM)

Taking Sumudu transform on both sides of Eq. (16.5) and using Eq. (16.2), we have

S u x, t =
n− 1

k = 0

sku k x, 0 + sαS h x, t −Ru x, t −Nu x, t 16 18

The nonlinear operator is as:

N φ x, t; p = S φ x, t; p −
n− 1

k = 0

skφ k x, t; p 0 + + sαS
Rφ x, t; p + Nφ x, t; p

− h x, t
16 19
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Constructing the homotopy, we get

1− np S φ x, t; p − u0 x, t = ℏpH x, t N φ x, t; p 16 20

Substituting p = 0 and p =
1
n
in Eq. (16.20), we obtain Eq. (16.9). Using Taylor’s series expansion on φ(x, t; p), we obtain

Eqs. (16.10) and (16.11). If R, u0(x, t), H(x, t), and ℏ are correctly chosen, then Eq. (16.10) converges at p =
1
n
.

Let us define the vector Eq. (16.13). Differentiating Eq. (16.20) m-times with respect to p, setting p= 0 and then dividing by
m!, we have the mth-order deformation equation as follows:

S um x, t − χmum− 1 x, t = ℏH x, t ℜm um− 1 x, t 16 21

By applying inverse Sumudu transform on both sides of Eq. (16.21), we obtain

um x, t = χmum− 1 x, t + S− 1 ℏH x, t ℜm um− 1 x, t , 16 22

with Eqs. (16.16) and (16.17).

16.5 q-Homotopy Analysis Elzaki Transform Method (q-HAETM)

Taking Elzaki transform on both sides of Eq. (16.5) and with the help of Eq. (16.3), we have

E u x, t =
n− 1

k = 0

sk + 2u k x, 0 + sαE h x, t −Ru x, t −Nu x, t 16 23

Let us define the nonlinear operator as:

N φ x, t; p = E φ x, t; p −
n− 1

k = 0

sk + 2φ k x, t; p 0 + + sαE
Rφ x, t; p + Nφ x, t; p

− h x, t
16 24

The homotopy may be constructed as:

1− np E φ x, t; p −u0 x, t = ℏpH x, t N φ x, t; p 16 25

Let us define the vector Eq. (16.13). Differentiating Eq. (16.25)m-times with respect to p, setting p= 0 and then dividing by
m!, the mth-order deformation equation is obtained as follows:

E um x, t − χmum− 1 x, t = ℏH x, t ℜm um− 1 x, t 16 26

By applying inverse Elzaki transform on both sides of Eq. (16.26), we find

um x, t = χmum− 1 x, t + E− 1 ℏH x, t ℜm um− 1 x, t , 16 27

with Eqs. (16.16) and (16.17).

16.6 q-Homotopy Analysis Aboodh Transform Method (q-HAATM)

Applying Aboodh transform on both sides of Eq. (16.5) and using Eq. (16.4), we have

A u x, t =
n− 1

k = 0

s− k− 2u k x, 0 + s− αA h x, t −Ru x, t −Nu x, t , 16 28
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Define a nonlinear operator as:

N φ x, t; p = A φ x, t; p −
n− 1

k = 0

s− k− 2φ k x, t; p 0 + + s− αA
Rφ x, t; p + Nφ x, t; p

− h x, t
, 16 29

where p 0,
1
n

, and φ(x, t; p) is the unknown function.

Constructing a homotopy, we get

1−np A φ x, t; p − u0 x, t = ℏpH x, t N φ x, t; p , 16 30

where H(x, t) represent the nonzero auxiliary function, ℏ 0 is an auxiliary parameter, and u0(x, t) is the initial value. If

p = 0 and p =
1
n
then, we obtain Eq. (16.9). As p increases from 0 to

1
n
, then φ(x, t; p) varies from u0(x, t) to the solution of

Eq. (16.5). Using Taylor’s series expansion on φ(x, t; p), one has get Eq. (16.10) with Eq. (16.11). If R, u0(x, t),H(x, t), and ℏ are

properly chosen, then Eq. (16.10) converges at p =
1
n
. So we get Eq. (16.12).

Let us define the vector Eq. (16.13). Differentiating Eq. (16.30) m-times with respect to p, setting p= 0 and then dividing by
m!, we have the mth-order deformation equation as:

A um x, t − χmum− 1 x, t = ℏH x, t ℜm um− 1 x, t 16 31

Applying inverse Aboodh transform on both sides of Eq. (16.31), we obtain

um x, t = χmum− 1 x, t + A− 1 ℏH x, t ℜm um− 1 x, t , 16 32

with Eqs. (16.16) and (16.17).
Next, we solve two test problems to demonstrate the present methods.

16.7 Test Problems

16.7.1 Implementation of q-HALTM

Example 16.1 Let us consider the one-dimensional heat-like model (Özis and Agırseven 2008; Sadighi et al. 2008) as:

Dα
t u x, t =

1
2
x2uxx x, t , 0 < x < 1, t > 0, 0 < α ≤ 1, 16 33

with the boundary conditions:

u 0, t = 0, u 1, t = et , 16 34

and initial condition:

u x, 0 = x2 16 35

Solution

To solve Eqs. (16.33)–(16.35) using q-HALTM, we chose the initial approximation as:

u0 x, t = u x, 0 = x2 16 36

Applying Laplace transform on Eq. (16.33) and simplifying, we obtain

L u x, t =
x2

s
+

s− α

2
L x2

∂2u x, t
∂x2

16 37

The nonlinear operator may be written as:

N φ x, t; p = L φ x, t; p −
x2

s
1−

χm
n

−
s− α

2
L x2

∂2φ x, t; p
∂x2

16 38
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Now, the mth-order deformation equation with the assumption H(x, t) = 1 can be written as:

L um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 16 39

where

Rm um− 1 x, t = L um− 1 x, t −
x2

s
1−

χm
n

−
s− α

2
L x2

∂2um− 1 x, t
∂x2

16 40

Applying inverse Laplace transform in Eq. (16.39), we have

um x, t = χmum− 1 x, t + L− 1 ℏℜm um− 1 x, t 16 41

From Eqs. (16.36) and (16.41), we have

u0 x, t = x2, 16 42

u1 x, t = χ1u0 x, t + L− 1 ℏR1 u0 x, t =
−ℏx2tα

Γ α + 1
, 16 43

u2 x, t = χ2u1 x, t + L− 1 ℏR2 u1 x, t =
−nℏx2tα

Γ α + 1
+ ℏ

−ℏx2tα

Γ α + 1
+

ℏx2t2α

Γ 2α + 1

=
− x2tα

Γ α + 1
ℏ ℏ + n +

ℏ2x2t2α

Γ 2α + 1
,

16 44

u3 x, t = χ3u2 x, t + L− 1 ℏR3 u2 x, t =
− x2tα

Γ α + 1
ℏ ℏ + n 2 +

x2t2α

Γ 1 + 2α
2ℏ2 n + ℏ

−
ℏ3x2t3α

Γ 3α + 1

16 45

and so on. Therefore, the fourth-order approximate solution of Eq. (16.33) is given by:

uq−HALTM x, t; n,ℏ = u0 x, t; n,ℏ +
3

i = 1

ui x, t; n,ℏ
1
n

i

16 46

By substituting ℏ = − 1 and n = 1, the solution of the fractional heat-like equation may be obtained as:

u x, t = x2 + x2
tα

Γ 1 + α
+ x2

t2α

Γ 1 + 2α
+ x2

t3α

Γ 1 + 3α
+ ,

= x2 1 +
tα

Γ 1 + α
+

t2α

Γ 1 + 2α
+

t3α

Γ 1 + 3α
+ = x2E tα ,

16 47

where E(tα) is called the Mittag-Leffler function. In particular, at α = 1, Eq. (16.47) reduces to u(x, t) = x2et, which is same as
the solution of Sadighi et al. (2008).

Example 16.2 Consider the following nonlinear advection equation (Wazwaz 2007):

∂αu
∂tα

+ u
∂u
∂x

= 0, 0 < α ≤ 1, 16 48

with the initial condition:

u x, 0 = − x 16 49

Solution

Here, we chose the initial approximation as:

u0 x, t = u x, 0 = − x 16 50
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Applying Laplace transform on both sides of Eq. (16.48) and simplifying, we obtain

L u x, t =
− x
s

−
1
sα
L u

∂u x, t
∂x

16 51

From Eq. (16.48), the nonlinear operator is written as:

N ϕ x, t; p = L ϕ x, t; p +
x
s

1−
χm
n

+
1
sα
L ϕ x, t; p

∂ϕ x, t; p
∂x

16 52

The mth-order deformation equation when H(x, t) = 1 is

L um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 16 53

where

Rm um− 1 x, t = L um− 1 x, t +
x
s

1−
χm
n

+
1
sα
L

m− 1

k = 0

uk x, t um− 1− k x, t x 16 54

Taking inverse Laplace transform on Eq. (16.53), we get

um x, t = χmum− 1 x, t + L− 1 ℏRm um− 1 x, t 16 55

Now, from Eq. (16.55) for m≥ 1, we find

u1 x, t = χ1u0 x, t + L− 1 ℏR1 u0 x, t =
ℏxtα

Γ α + 1
, 16 56

u2 x, t = χ2u1 x, t + L− 1 ℏR2 u1 x, t =
nℏxtα

Γ α + 1
+ ℏ

ℏxtα

Γ α + 1
−

2ℏxt2α

Γ 2α + 1

=
xtα

Γ α + 1
ℏ ℏ + n −

2ℏ2xt2α

Γ 2α + 1
,

16 57

u3 x, t = χ3u2 x, t + L− 1 ℏR3 u2 x, t =
xtα

Γ α + 1
ℏ ℏ + n 2

−
4xt2α

Γ 2α + 1
ℏ2 ℏ + n

+
xℏ3Γ 2α + 1 t3α

Γ α + 1 2Γ 3α + 1
+

4ℏ3xt3α

Γ 3α + 1
,

16 58

and so on. The fourth-order series solution of Eq. (16.48) by q-HALTM can be written in the form:

uq−HALTM x, t;n,ℏ = u0 x, t; n,ℏ +
3

i = 1

ui x, t; n,ℏ
1
n

i

or, especially when ℏ = − 1 and n = 1,

uq−HALTM x, t = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
− 16 59

Particularly at α = 1, Eq. (16.59) reduces to a solution u x, t =
x

t− 1
, which is same as the solution of Wazwaz (2007).

16.7.2 Implementation of q-HASTM

In order to solve Eqs. (16.33)–(16.35) using q-HASTM, let us choose the initial approximation as Eq. (16.36). Applying
Sumudu transform on both sides of Eq. (16.33) and substituting the initial condition, we obtain

S u x, t = x2 +
sα

2
S x2

∂2u x, t
∂x2

16 60
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The nonlinear operator is

N φ x, t; p = S φ x, t; p − x2 1−
χm
n

−
sα

2
S x2

∂2φ x, t; p
∂x2

16 61

Now, the mth-order deformation equation when H(x, t) = 1 can be written as:

S um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 16 62

where

Rm um− 1 x, t = S um− 1 x, t − x2 1−
χm
n

−
sα

2
S x2

∂2um− 1 x, t
∂x2

16 63

Applying inverse Sumudu transform on Eq. (16.62), it gives

um x, t = χmum− 1 x, t + S− 1 ℏℜm um− 1 x, t 16 64

From Eqs. (16.36) and (16.64), we have

u0 x, t = x2, 16 65

u1 x, t = χ1u0 x, t + S− 1 ℏR1 u0 x, t =
−ℏx2tα

Γ α + 1
, 16 66

u2 x, t = χ2u1 x, t + S− 1 ℏR2 u1 x, t =
− nℏx2tα

Γ α + 1
+ ℏ

−ℏx2tα

Γ α + 1
+

ℏx2t2α

Γ 2α + 1

=
− x2tα

Γ α + 1
ℏ ℏ + n +

ℏ2x2t2α

Γ 2α + 1
,

16 67

u3 x, t = χ3u2 x, t + S− 1 ℏR3 u2 x, t =
− x2tα

Γ α + 1
ℏ ℏ + n 2 +

x2t2α

Γ 1 + 2α
2ℏ2 n + ℏ

−
ℏ3x2t3α

Γ 3α + 1

16 68

and so on. Therefore, the fourth-order approximate solution of Eq. (16.33) is given by:

uq−HASTM x, t;n,ℏ = u0 x, t;n,ℏ +
3

i = 1

ui x, t;n,ℏ
1
n

i

16 69

By substituting ℏ = − 1 and n = 1, the solution of Eq. (16.33) may be written as:

u x, t = x2 1 +
tα

Γ 1 + α
+

t2α

Γ 1 + 2α
+

t3α

Γ 1 + 3α
+ = x2E tα 16 70

where E(tα) is called the Mittag-Leffler function. In particular, at α = 1, Eq. (16.70) reduces to u(x, t) = x2et, which is same
as the solution of Sadighi et al. (2008).
Further, taking Sumudu transform on both sides of Eq. (16.48) and simplifying, we have

S u x, t = − x− sαS u
∂u x, t

∂x
16 71

From Eq. (16.48), the nonlinear operator is written as:

N ϕ x, t; p = S ϕ x, t; p + x 1−
χm
n

+ sαS ϕ x, t; p
∂ϕ x, t; p

∂x
16 72

The mth-order deformation equation with the assumption H(x, t) = 1 is Eq. (16.62), where

Rm um− 1 x, t = S um− 1 x, t + x 1−
χm
n

+ sαS
m− 1

k = 0

uk x, t um− 1− k x, t x 16 73
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Taking inverse Sumudu transform on Eq. (16.62), it gives Eq. (16.64).
Now, from Eqs. (16.50) and (16.64) for m ≥ 1, we find

u0 x, t = − x, 16 74

u1 x, t =
ℏxtα

Γ α + 1
, 16 75

u2 x, t =
nℏxtα

Γ α + 1
+ ℏ

ℏxtα

Γ α + 1
−

2ℏxt2α

Γ 2α + 1
=

xtα

Γ α + 1
ℏ ℏ + n −

2ℏ2xt2α

Γ 2α + 1
, 16 76

u3 x, t =
xtα

Γ α + 1
ℏ ℏ + n 2

−
4xt2α

Γ 2α + 1
ℏ2 ℏ + n +

xℏ3Γ 2α + 1 t3α

Γ α + 1 2Γ 3α + 1
+

4ℏ3xt3α

Γ 3α + 1
, 16 77

and so on. The fourth-order series solution is written in the form:

uq−HASTM x, t; n,ℏ = u0 x, t; n,ℏ +
3

i = 1

ui x, t; n,ℏ
1
n

i

16 78

or, especially when ℏ = − 1 and n = 1,

uq−HASTM x, t = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
−… 16 79

Particularly at α = 1, Eq. (16.79) reduces to a solution u x, t =
x

t− 1
, which is same as the solution of Wazwaz (2007).

16.7.3 Implementation of q-HAETM

To solve Eqs. (16.33)–(16.35) using q-HAETM, we take the initial approximation as:

u0 x, t = u x, 0 = x2 16 80

Applying Elzaki transform on Eq. (16.33) and using Eq. (16.80), we get

E u x, t = x2s2 +
sα

2
E x2

∂2u x, t
∂x2

16 81

The nonlinear operator may be written as:

N φ x, t; p = E φ x, t; p − x2s2 1−
χm
n

−
sα

2
E x2

∂2φ x, t; p
∂x2

16 82

Now, the mth-order deformation equation with the assumption H(x, t) = 1 may be written as:

E um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 16 83

where

Rm um− 1 x, t = E um− 1 x, t − x2s2 1−
χm
n

−
sα

2
E x2

∂2um− 1 x, t
∂x2

16 84

Applying inverse Elzaki transform in Eq. (16.83), we have

um x, t = χmum− 1 x, t + E− 1 ℏℜm um− 1 x, t 16 85

From Eqs. (16.80) and (16.85), we have

u0 x, t = x2, 16 86

u1 x, t = χ1u0 x, t + E− 1 ℏR1 u0 x, t =
−ℏx2tα

Γ α + 1
, 16 87
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u2 x, t = χ2u1 x, t + E− 1 ℏR2 u1 x, t =
− nℏx2tα

Γ α + 1
+ ℏ

−ℏx2tα

Γ α + 1
+

ℏx2t2α

Γ 2α + 1

=
− x2tα

Γ α + 1
ℏ ℏ + n +

ℏ2x2t2α

Γ 2α + 1
,

16 88

u3 x, t = χ3u2 x, t + E− 1 ℏR3 u2 x, t =
− x2tα

Γ α + 1
ℏ ℏ + n 2 +

x2t2α

Γ 1 + 2α
2ℏ2 n + ℏ

−
ℏ3x2t3α

Γ 3α + 1

16 89

and so on. Therefore, the fourth-order approximate solution of Eq. (16.33) is given by:

uq−HAETM x, t; n,ℏ = u0 x, t; n,ℏ +
3

i = 1

ui x, t; n,ℏ
1
n

i

16 90

By substituting ℏ = − 1 and n = 1, the solution of the fractional heat-like equation may be obtained as:

u x, t = x2 1 +
tα

Γ 1 + α
+

t2α

Γ 1 + 2α
+

t3α

Γ 1 + 3α
+ … = x2E tα 16 91

When α = 1 Eq. (16.91) reduces to u(x, t) = x2et, which is same as the solution of Sadighi et al. (2008).
Again, applying Elzaki transform on both sides of Eq. (16.48) and using Eq. (16.50), we obtain

E u x, t = − xs2 − sαE u
∂u x, t

∂x
16 92

From Eq. (16.48), the nonlinear operator is written as:

N ϕ x, t; p = E ϕ x, t; p + xs2 1−
χm
n

+ sαE ϕ x, t; p
∂ϕ x, t; p

∂x
16 93

The mth-order deformation equation when H(x, t) = 1 is

E um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 16 94

where

Rm um− 1 x, t = E um− 1 x, t + xs2 1−
χm
n

+ sαE
m− 1

k = 0

uk x, t um− 1− k x, t x 16 95

Taking inverse Elzaki transform on Eq. (16.94), we get

um x, t = χmum− 1 x, t + E− 1 ℏRm um− 1 x, t 16 96

Now, from Eqs. (16.96) and (16.50) for m≥ 1, the following expressions are obtained as:

u0 x, t = − x, 16 97

u1 x, t =
ℏxtα

Γ α + 1
, 16 98

u2 x, t =
nℏxtα

Γ α + 1
+ ℏ

ℏxtα

Γ α + 1
−

2ℏxt2α

Γ 2α + 1
=

xtα

Γ α + 1
ℏ ℏ + n −

2ℏ2xt2α

Γ 2α + 1
, 16 99

u3 x, t =
xtα

Γ α + 1
ℏ ℏ + n 2

−
4xt2α

Γ 2α + 1
ℏ2 ℏ + n +

xℏ3Γ 2α + 1 t3α

Γ α + 1 2Γ 3α + 1
+

4ℏ3xt3α

Γ 3α + 1
, 16 100

and so on. The fourth-order series solution of Eq. (16.48) by q-HAETM can be written in the form:

uq−HAETM x, t; n,ℏ = u0 x, t; n,ℏ +
3

i = 1

ui x, t; n,ℏ
1
n

i

16 101
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or, especially when ℏ = − 1 and n = 1,

uq−HAETM x, t = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
−…, 16 102

Particularly at α = 1, Eq. (16.102) reduces to a solution u x, t =
x

t− 1
, which is same as the solution of Wazwaz (2007).

16.7.4 Implementation of q-HAATM

To solve Eqs. (16.33)–(16.35) using q-HAATM, we have taken the initial approximation as:

u0 x, t = u x, 0 = x2 16 103

Applying Aboodh transform on Eq. (16.33) and using initial approximation Eq. (16.103), we get

A u x, t =
x2

s2
+

s− α

2
A x2

∂2u x, t
∂x2

16 104

The nonlinear operator is obtained as:

N φ x, t; p = A φ x, t; p −
x2

s2
1−

χm
n

−
s− α

2
A x2

∂2φ x, t; p
∂x2

16 105

Now, the mth-order deformation equation for H(x, t) = 1 may be written as:

A um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 16 106

where

Rm um− 1 x, t = A um− 1 x, t −
x2

s2
1−

χm
n

−
s− α

2
A x2

∂2um− 1 x, t
∂x2

16 107

Applying inverse Aboodh transform, Eq. (16.106) reduces to

um x, t = χmum− 1 x, t + A− 1 ℏℜm um− 1 x, t 16 108

From Eqs. (16.108) for m≥ 1, the following expressions are obtained:

u1 x, t = χ1u0 x, t + A− 1 ℏR1 u0 x, t =
−ℏx2tα

Γ α + 1
, 16 109

u2 x, t = χ2u1 x, t + A− 1 ℏR2 u1 x, t =
− nℏx2tα

Γ α + 1
+ ℏ

−ℏx2tα

Γ α + 1
+

ℏx2t2α

Γ 2α + 1

=
− x2tα

Γ α + 1
ℏ ℏ + n +

ℏ2x2t2α

Γ 2α + 1
,

16 110

u3 x, t = χ3u2 x, t + A− 1 ℏR3 u2 x, t =
− x2tα

Γ α + 1
ℏ ℏ + n 2 +

x2t2α

Γ 1 + 2α
2ℏ2 n + ℏ

−
ℏ3x2t3α

Γ 3α + 1

16 111

and so on. Hence, the fourth-order approximate solution of Eq. (16.33) is given by:

uq−HAATM x, t; n,ℏ = u0 x, t; n,ℏ +
3

i = 1

ui x, t; n,ℏ
1
n

i

16 112

By substituting ℏ = − 1 and n = 1, the solution of the fractional heat-like equation is obtained as:

u x, t = x2 1 +
tα

Γ 1 + α
+

t2α

Γ 1 + 2α
+

t3α

Γ 1 + 3α
+ … = x2E tα 16 113
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When α = 1, Eq. (16.113) reduces to u(x, t) = x2et, which is same as the solution of Sadighi et al. (2008).
Further, applying Aboodh transform on both sides of Eq. (16.48) and using Eq. (16.50), we obtain

A u x, t = −
x
s2

− s− αA u
∂u x, t

∂x
16 114

From Eq. (16.48), the nonlinear operator is written as:

N ϕ x, t; p = A ϕ x, t; p +
x
s2

1−
χm
n

+ s− αA ϕ x, t; p
∂ϕ x, t; p

∂x
16 115

The mth-order deformation equation when H(x, t) = 1 is

A um x, t − χmum− 1 x, t = ℏRm um− 1 x, t , 16 116

where

Rm um− 1 x, t = A um− 1 x, t +
x
s2

1−
χm
n

+ s− αA
m− 1

k = 0

uk x, t um− 1− k x, t x 16 117

Taking inverse Aboodh transform on Eq. (16.116), we get

um x, t = χmum− 1 x, t + A− 1 ℏRm um− 1 x, t 16 118

Now, from Eqs. (16.118) and (16.50), the following expressions are obtained as:

u0 x, t = − x, 16 119

u1 x, t =
ℏxtα

Γ α + 1
, 16 120

u2 x, t =
nℏxtα

Γ α + 1
+ ℏ

ℏxtα

Γ α + 1
−

2ℏxt2α

Γ 2α + 1
=

xtα

Γ α + 1
ℏ ℏ + n −

2ℏ2xt2α

Γ 2α + 1
, 16 121

u3 x, t =
xtα

Γ α + 1
ℏ ℏ + n 2

−
4xt2α

Γ 2α + 1
ℏ2 ℏ + n +

xℏ3Γ 2α + 1 t3α

Γ α + 1 2Γ 3α + 1
+

4ℏ3xt3α

Γ 3α + 1
, 16 122

and so on. The fourth-order series solution of Eq. (16.48) by q-HAATM can be written in the form:

uq−HAATM x, t;n,ℏ = u0 x, t;n,ℏ +
3

i = 1

ui x, t; n,ℏ
1
n

i

16 123

or, especially when ℏ = − 1 and n = 1,

uq−HAATM x, t = − x− x
tα

Γ 1 + α
− 2x

t2α

Γ 1 + 2α
− 4x

t3α

Γ 1 + 3α
−

x Γ 1 + 2α

Γ 1 + α 2

t3α

Γ 1 + 3α
−… 16 124

Particularly at α = 1, Eq. (16.124) reduces to a solution u x, t =
x

t− 1
, which is same as the solution of Wazwaz (2007).
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17

(G /G )-Expansion Method

17.1 Introduction

Several mathematical approaches (Diethelm et al. 2002; Erturk and Momani 2008; Behroozifar and Ahmadpour 2017; Jena
et al. 2020a, 2020b) have been developed for solving fractional differential equations. However, finding exact solutions to
nonlinear fractional differential equations (FDEs) was challenging until (Li and He 2010) introduced a fractional complex
transform. Fractional complex transform turns FDEs into ordinary differential equations (ODEs), allowing all analytical
methods used to solve ODEs. The (G /G)-expansion method (Bin 2012; Gepreel and Omran 2012; Bekir and Guner
2013; Bekir and Guner 2014; Bekir et al. 2015; Khan et al. 2019) is a powerful method among them to solve FDEs. One
advantage of this technique is that it allows us to find the exact solution of FDEs without initial or boundary conditions.
Exact solutions can be achieved via this method by solving a set of linear or nonlinear algebraic equations.

17.2 Description of the (G /G)-Expansion Method

This part will briefly describe the main steps of this method for solving fractional partial differential equations.
Step 1. In order to understand the (G /G)-expansion method (Bin 2012; Gepreel and Omran 2012; Bekir et al. 2015), let us

consider the following nonlinear fractional partial differential equation in two independent variables x and t of the type

Q u, ux , uxx ,…,Dα
t u,… = 0, 0 < α ≤ 1, 17 1

where u = u(x, t) is an unknown function, and Q is a polynomial of u and its partial fractional derivatives, in which the
highest order derivatives and the nonlinear terms are involved.
Step 2. The traveling wave variable is (Bekir et al. 2015)

u x, t = U ξ , 17 2

ξ = kx−
ctα

Γ 1 + α
, 17 3

where c and k are nonzero constants to be determined later. By using the chain rule (Güner et al. 2015), we have

Dα
t u = ΔtuζD

α
t ζ,

Dα
xu = ΔxuζD

α
xζ,

whereΔt andΔx are the fractal indexes (Güner et al. 2015).Without loss of generality, we can considerΔt=Δx= κ, where κ is
a constant. Using Eqs. (17.2) and (17.3), Eq. (17.1) can be rewritten in the following nonlinear ODE form

P U , kU , k2U ,…, − cU ,… = 0, 17 4

where the prime denotes the derivative with respect to ξ.
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Step 3. We suppose that the (G /G)-expansion approach is based on the assumption that the solution of the ordinary
differential equation Eq. (17.4) may be represented in the following form (Bekir et al. 2015)

U ξ =
m

i = 0

ai
G
G

i

, am 0, 17 5

where ai (i = 0, 1, 2, …,m) are constants, while G = G(ξ) will satisfy the following second-order linear differential equation
(Bekir et al. 2015)

G ξ + λG ξ + μG ξ = 0, 17 6

where λ and μ are constants. Then, the positive integer m may be calculated by considering the homogenous balance
between the highest order derivatives and the nonlinear terms arising in Eq. (17.4). More precisely, we define the degree
of U(ξ) as deg[U(ξ)] = m, which leads to the degrees of the other expressions as follows (Gepreel and Omran 2012):

deg
dpU
dξp

= m + p,

deg Us dpU
dξp

q

= ms + q p + m

17 7

Therefore, we can obtain the value of m in Eq. (17.5).
Now, Eq. (17.6) can be rewritten as

d
dξ

G
G

= −
G
G

2

− λ
G
G

− μ 17 8

By the generalized solutions of Eq. (17.6), we have (Shang and Zheng 2013)

G
G

=

−
λ

2
+

λ2 − 4μ
2

c1 sinh
λ2 − 4μ
2

ξ + c2 cosh
λ2 − 4μ
2

ξ

c1 cosh
λ2 − 4μ
2

ξ + c2 sinh
λ2 − 4μ
2

ξ

, λ2 − 4μ > 0,

−
λ

2
+

4μ− λ2

2

− c1 sin
4μ− λ2

2
ξ + c2 cos

4μ− λ2

2
ξ

c1 cos
4μ− λ2

2
ξ + c2 sin

4μ− λ2

2
ξ

, λ2 − 4μ < 0,

−
λ

2
+

c2
c1 + c2ξ

, λ2 − 4μ = 0,

17 9

where c1 and c2 are arbitrary constants.
Step 4. Substituting Eq. (17.5) into Eq. (17.4), using Eq. (17.8), and collecting all terms with the same order of (G /G)

together, Eq. (17.4) is converted into another polynomial in (G /G). Then equating each coefficient of the resulting poly-
nomial to zero, we obtain a set of algebraic equations for λ, μ, k, c, and ai (i = 0, 1, 2, …, m).
Step 5. Solving the algebraic equations system in Step 4, subsequently substituting these constants λ, μ, k, c, and ai (i= 0, 1,

2, …, m), and using Eq. (17.9), we can construct a variety of exact solutions of Eq. (17.1).
The following sections present two examples to demonstrate the usefulness of the (G /G)-expansion technique to solve

nonlinear fractional differential equations.

17.3 Application Problems

Here, we apply the present method to solve a nonlinear time-fractional Fisher’s equation in Example 17.1 and the nonlinear
time-fractional KdV-mKdV equation in Example 17.2.
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Example 17.1 Let us consider the nonlinear time-fractional Fisher’s equation (Veeresha et al. 2019)

∂αu
∂tα

=
∂2u
∂x2

+ 6u 1− u , t > 0, x R, 0 < α ≤ 1 17 10

Solution

Equation (17.10) may be reduced to the ordinary differential equation in ξ by using the above-discussed transformation

u x, t = U ξ , ξ = kx −
ctα

Γ 1 + α
as

k2U + cU + 6U − 6U2 = 0, 17 11

where prime denotes the differentiation with respect to ξ. The highest order linear and nonlinear terms in Eq. (17.11) areU
and U2. So balancing the order of U and U2 by using the concept Eq. (17.7), we get

deg U = deg U2 ,

m + 2 = 2m m = 2
17 12

So, we assume the solution of the ordinary differential equation Eq. (17.11) as Eq. (17.5) atm = 2. This may be written as

U ξ =
2

i = 0

ai
G
G

i

= a0 + a1
G
G

1

+ a2
G
G

2

, a2 0 17 13

By using Eqs. (17.6) and (17.13) in Eq. (17.11), we have

U ξ = − 2a2
G
G

3

+ − 2a2λ− a1
G
G

2

+ − 2a2μ− a1λ
G
G

− a1μ, 17 14

U ξ = 6a2
G
G

4

+ 2a1 + 10a2λ
G
G

3

+ 8a2μ + 3a1λ + 4a2λ2
G
G

2

+

6a2λμ + 2a1μ + a1λ
2 G

G
+ a1λμ + 2a2μ2,

17 15

and

U2 ξ = a22
G
G

4

+ 2a1a2
G
G

3

+ 2a0a2 + a21
G
G

2

+ 2a0a1
G
G

+ a20 17 16

By plugging Eqs. (17.13)–(17.16) into Eq. (17.11), collecting the coefficients of
G
G

i

, i = 0,…, 4 and setting these to zero,

we obtain the following system

G
G

0

a1k
2λμ + 2k2μ2a2 − ca1μ− 6a20 + 6a0 = 0,

G
G

1

a1k
2λ2 + 6a2k

2λμ + 2k2a1μ− cλa1 − 2ca2μ− 12a0a1 + 6a1 = 0,

G
G

2

4a2k
2λ2 + 3k2λa1 + 8k2a2μ− 2ca2λ− ca1 − 12a0a2 − 6a21 + 6a2 = 0,

G
G

3

10k2λa2 + 2k2a1 − 2ca2 − 12a1a2 = 0,

G
G

4

6k2a2 − 6a22 = 0

17 17

When we solve a system of linear equations, the point of intersection of the two lines is the solution. However, in the case
of a nonlinear system of equations, the graphs might be circles, parabolas, or hyperbolas, with several points of inter-
section and hence multiple solutions. By solving the above nonlinear system using Maple software, it gives different values
of c, k, ai, i = 0, 1, 2 in various cases. Few of them are provided here.
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Case 1:

a0 = −
6μ

λ2 − 4μ
, a1 = −

6λ

λ2 − 4μ
, a2 = −

6

λ2 − 4μ
, c = 0, k =

6i

λ2 − 4μ
, 17 18

Case 2:

a0 = −
− λ2 − 2μ

λ2 − 4μ
, a1 =

6λ

λ2 − 4μ
, a2 =

6

λ2 − 4μ
, c = 0, k =

6

λ2 − 4μ
, 17 19

Case 3:

a0 =
λ2 − 2μ λ λ2 − 4μ

2 λ2 − 4μ
, a1 =

λ λ2 − 4μ

λ2 − 4μ
, a2 =

1

λ2 − 4μ
, c = 5

± 1

λ2 − 4μ
,

k =
± 1

λ2 − 4μ
,

17 20

where λ and μ are arbitrary constants. The solution to the problem may be obtained by considering all of the cases one by
one. However, only Case 3 is being considered for getting the solution in this case. Similarly, Cases 1 and 2 can also be used
to find other solutions.
Substituting the values of constants of Eq. (17.20) into Eq. (17.13), we obtain

U ξ =
λ2 − 2μ λ λ2 − 4μ

2 λ2 − 4μ
+

λ λ2 − 4μ

λ2 − 4μ

G
G

1

+
1

λ2 − 4μ

G
G

2

, 17 21

where

ξ =
± 1

λ2 − 4μ
x− 5

± 1

λ2 − 4μ

tα

Γ 1 + α
17 22

Substituting the general solution of Eq. (17.6), which is given in Eq. (17.9) into the above Eq. (17.21), we have three types
of traveling wave solution of the nonlinear time-fractional Fisher’s equation as follows:

when λ2− 4μ> 0,

U1,2 ξ = a0 + a1 −
λ

2
+

λ2 − 4μ
2

c1 sinh
λ2 − 4μ
2

ξ + c2 cosh
λ2 − 4μ
2

ξ

c1 cosh
λ2 − 4μ
2

ξ + c2 sinh
λ2 − 4μ
2

ξ

1

+ a2

−
λ

2
+

λ2 − 4μ
2

c1 sinh
λ2 − 4μ
2

ξ + c2 cosh
λ2 − 4μ
2

ξ

c1 cosh
λ2 − 4μ
2

ξ + c2 sinh
λ2 − 4μ
2

ξ

2

,

17 23

when λ2− 4μ< 0,

U3,4 ξ = a0 + a1 −
λ

2
+

4μ− λ2

2

− c1 sin
4μ− λ2

2
ξ + c2 cos

4μ− λ2

2
ξ

c1 cos
4μ− λ2

2
ξ + c2 sin

4μ− λ2

2
ξ

1

+ a2

−
λ

2
+

4μ− λ2

2

− c1 sin
4μ− λ2

2
ξ + c2 cos

4μ− λ2

2
ξ

c1 cos
4μ− λ2

2
ξ + c2 sin

4μ− λ2

2
ξ

2

,

17 24

186 17 (G /G )-Expansion Method



when λ2− 4 μ = 0,

U5,6 ξ = a0 + a1 −
λ

2
+

c2
c1 + c2ξ

1

+ a2 −
λ

2
+

c2
c1 + c2ξ

2

, 17 25

where the values of a0, a1, a2, and ξ are given in Eqs. (17.20) and (17.22). All the above Eqs. (17.23)–(17.25) are the exact
solutions of the nonlinear time-fractional Fisher’s equation. Putting the suitable values of the constants in Eqs. (17.23)–
(17.25), we obtain the traveling wave solutions of the given model.

Example 17.2 Consider the following nonlinear time-fractional KdV-mKdV equation (Kaya et al. 2018)

∂αu
∂tα

+ 2u
∂u
∂x

+ 3u2
∂u
∂x

−
∂3u
∂x3

= 0, 0 < α ≤ 1 17 26

Solution

Using the transformation u x, t = U ξ , ξ = kx −
ctα

Γ 1 + α
in Eq. (17.26), it reduces to

cU − 2kUU − 3kU2U + k3U = 0, 17 27

where prime denotes the differentiation with respect to ξ. The highest order linear and nonlinear terms in Eq. (17.27) areU
and U2U . So balancing the order of U and U2U by using the concept Eq. (17.7), we get

deg U = deg U2U ,

m + 3 = 2m + m + 1 m = 1
17 28

So, we assume the solution of Eq. (17.27) as Eq (17.5) at m = 1. This may be written as

U ξ =
1

i = 0

ai
G
G

i

= a0 + a1
G
G

, a1 0 17 29

By using Eqs. (17.6) and (17.29) in Eq. (17.27), we have

U ξ = − a1μ− a1λ
G
G

− a1
G
G

2

, 17 30

U ξ = 2a1
G
G

3

+ 3a1λ
G
G

2

+ 2a1μ + a1λ
2 G

G
+ a1λμ, 17 31

U ξ = − 6a1
G
G

4

− 12a1λ
G
G

3

+ − 8a1μ− 7a1λ
2 G

G

2

+ − 8a1λμ− a1λ
3 G

G

+ − λ2a1μ− 2μ2a1 ,

17 32

U ξ U ξ = − a21
G
G

3

+ − a21λ− a0a1
G
G

2

+ − a21μ− a0a1μ
G
G

1

+ − a0a1μ , 17 33

and

U2 ξ U ξ = − a31
G
G

4

+ − a31λ− 2a0a
2
1

G
G

3

+ − a20a1 − a31μ− 2a0a
2
1λ

G
G

2

+ − a20a1λ− 2a0a
2
1μ

G
G

+ − a20a1μ

17 34
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By substituting Eqs. (17.30)–(17.34) into Eq. (17.27), collecting the coefficients of
G
G

i

, i = 0,…, 4 and setting these to

zero, we obtain the following system of the algebraic equation:

G
G

0

− a1k
3λ2μ− 2k3μ2a1 + 3kμa20a1 + 2kμa0a1 − cμa1 = 0,

G
G

1

− a1k
3λ3 − 8a1k

3λμ + 3kλa20a1 + 6kμa0a21 + 2kλa0a1 + 2kμa21 − cλa1 = 0,

G
G

2

− 7a1k
3λ2 − 8k3μa1 + 6kλa0a21 + 3kμa31 + 2kλa21 + 3ka20a1 + 2ka0a1 − ca1 = 0,

G
G

3

− 12k3λa1 + 3kλa31 + 6ka0a21 + 2ka21 = 0,

G
G

4

− 6k3a1 + 3ka31 = 0

17 35

By solving the above nonlinear system using Maple software, it gives

a0 =
± kλ

2
−

1
3
, a1 = ± 2k, c =

k3

2
λ2 − 4μ −

k
3
, k = k, 17 36

where k is a free parameter and λ, μ are arbitrary constants. Using the values of constants from Eq. (17.36), Eq. (17.29) may
be written as

U ξ =
± kλ

2
−

1
3

+ ± 2k
G
G

1

, 17 37

where

ξ = k x−
k3

2
λ2 − 4μ −

k
3

tα

Γ 1 + α
17 38

By substituting the general solution of Eq. (17.6), which is provided in Eq. (17.9), into the above mentioned Eq. (17.37), we
obtain three types of traveling wave solutions to the nonlinear time-fractional KdV-mKdV equation:

when λ2− 4μ> 0,

U1,2 ξ =
± kλ

2
−

1
3

+ ± 2k −
λ

2
+

λ2 − 4μ
2

c1 sinh
λ2 − 4μ
2

ξ + c2 cosh
λ2 − 4μ
2

ξ

c1 cosh
λ2 − 4μ
2

ξ + c2 sinh
λ2 − 4μ
2

ξ

17 39

when λ2− 4μ< 0,

U3,4 ξ =
± kλ

2
−

1
3

+ ± 2k −
λ

2
+

4μ− λ2

2

− c1 sin
4μ− λ2

2
ξ + c2 cos

4μ− λ2

2
ξ

c1 cos
4μ− λ2

2
ξ + c2 sin

4μ− λ2

2
ξ

17 40

when λ2− 4μ = 0,

U5,6 ξ =
± kλ

2
−

1
3

+ ± 2k −
λ

2
+

c2
c1 + c2ξ

17 41

Equations (17.39)–(17.41) are the exact solutions of the nonlinear time-fractional KdV-mKdV equation.
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18

(G /G2)-Expansion Method

18.1 Introduction

Exact solutions to nonlinear fractional differential equations (FDEs) play a vital role in nonlinear science. Several math-
ematical approaches (Diethelm et al. 2002; Erturk and Momani 2008; Behroozifar and Ahmadpour 2017) have been devel-
oped for solving FDEs. However, finding exact solutions to nonlinear FDEs remained challenging until Li andHe (Li andHe
2010) proposed a fractional complex transform to convert FDEs to ordinary differential equations (ODEs), allowing all ana-
lytical methods for solving ODEs to be used to partial differential equations (PDEs). Among these methods, the new ana-
lytical method, namely (G /G2)-expansion method (Arshed and Sadia 2018; Mohyud-Din and Bibi 2018; Ali et al. 2019;
Hassaballa 2020), has been utilized to obtain the solutions of time and space FDEs. The (G /G2)-method is a comparatively
new technique for finding the traveling wave solutions to nonlinear single and coupled equations that arise in physics, fluid
mechanics, wave propagation, population dynamics, and other fields. This method is more efficient and reliable as com-
pared to the (G /G)-expansion method. This approach yields hyperbolic, trigonometric, and rational functions as solutions.
These solutions are well suited to the investigation of nonlinear physical processes. Similar to the (G /G)-expansion method,
it also allows us to find the exact solution of FDEs without initial or boundary conditions. Again, the exact solutions can be
achieved simply by finally solving a set of linear or nonlinear algebraic equations.

18.2 Description of the (G /G2)-Expansion Method

This section will briefly describe the main steps of this approach for solving fractional PDEs.
Step 1. In order to understand the (G /G2)-expansion method (Arshed and Sadia 2018; Mohyud-Din and Bibi 2018; Ali

et al. 2019; Hassaballa 2020), we consider the following nonlinear fractional PDE in two independent variables x and t of
the type

Q u, ux , uxx ,…,Dα
t u,… = 0, 0 < α ≤ 1, 18 1

where u = u(x, t) is an unknown function, and Q is a polynomial of u and its partial fractional derivatives, in which the
highest order derivatives and the nonlinear terms are involved.
Step 2. The traveling wave variable is (Bekir et al. 2015)

u x, t = U ξ , 18 2

ξ = kx−
ctα

Γ 1 + α
, 18 3

where c and k are nonzero constants to be determined later. By using the chain rule (Güner et al. 2015), we have

Dα
t u = ΔtuζD

α
t ζ,

Dα
xu = ΔxuζD

α
xζ,

whereΔt andΔx are the fractal indexes (Güner et al. 2015).Without loss of generality, we can considerΔt=Δx= κ, where κ is
a constant. Using Eqs. (18.2) and (18.3), Eq. (18.1) can be rewritten in the following nonlinear ODE form

P U , kU , k2U ,…, − cU ,… = 0, 18 4

where the prime denotes the derivative with respect to ξ.
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Step 3. We assume (G /G2)-expansion approach for the solution of Eq. (18.4) may be represented in the following form
(Arshed and Sadia 2018; Ali et al. 2019; Hassaballa 2020)

U ξ = a0 +
m

i = 1

ai
G

G2

i

+ bi
G

G2

− i

, 18 5

where a0, ai, bi (i= 1, 2,…,m) are constants to be determined. It is worth noting that the constants am or bmmay be zero, but
both cannot be zero simultaneously. The function G = G(ξ) satisfies the following second-order linear differential equation
(Arshed and Sadia 2018; Mohyud-Din and Bibi 2018; Ali et al. 2019; Hassaballa 2020)

G

G2 = μ + λ
G

G2

2

, 18 6

where λ 0 and μ 1 are integers. Then, the positive integermmay be calculated by considering the homogenous balance
between the highest order derivatives and the nonlinear terms arising in Eq. (18.4). More precisely, we define the degree ofU
(ξ) as deg[U(ξ)] = m, which leads to the degrees of the other expressions as follows (Gepreel and Omran 2012):

deg
dpU
dξp

= m + p,

deg Us dpU
dξp

q

= ms + q p + m

18 7

Accordingly, we can obtain the value of m in Eq. (18.5).
By the generalized solutions of Eq. (18.6), we have (Arshed and Sadia 2018; Ali et al. 2019; Hassaballa 2020)

G

G2 =

μ

λ

c1 cos λμξ + c2 sin λμξ

c2 cos λμξ − c1 sin λμξ
, λμ > 0,

−
λμ

λ

c1 sinh 2 λμ ξ + c1 cosh 2 λμ ξ + c2

c1 sinh 2 λμ ξ + c1 cosh 2 λμ ξ − c2
, λμ < 0,

−
c1

λ c1ξ + c2
, λ 0, μ = 0,

18 8

where c1 and c2 are nonzero constants.
Step 4. Substituting Eq. (18.5) into Eq. (18.4), using Eq. (18.6), and collecting the coefficients of like powers of

G

G2

i

, i = 0, ± 1, ± 2, ± 3,… , Eq. (18.4) is converted into another polynomial in (G /G2). Then equating each coefficient

of the resulting polynomial to zero, we obtain a set of algebraic equations for λ, μ, k, c, a0, ai, and bi (i = 1, 2, …, m).
Step 5. Solving the algebraic equations system in Step 4, after substituting these constants λ, μ, k, c, a0, ai, and bi

(i = 1, 2, …, m), and using Eq. (18.8), we can construct a variety of exact solutions of Eq. (18.1).
Two examples are shown in the following sections to demonstrate the use of the (G /G2)-expansion method to solve

nonlinear FDEs.

18.3 Numerical Examples

We apply the present method to solve a nonlinear time-fractional Fisher’s equation in Example 18.1 and the nonlinear time-
fractional classical Burgers equation in Example 18.2.

Example 18.1 Let us consider the nonlinear time-fractional Fisher’s equation (Veeresha et al. 2019)

∂αu
∂tα

=
∂2u
∂x2

+ 6u 1−u , t > 0, x R, 0 < α ≤ 1 18 9
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Solution

Equation (18.9) canbereduced to theODEinξbyusing theabove-discussed transformationu x, t = U ξ , ξ = kx−
ctα

Γ 1 + α
as

k2U + cU + 6U − 6U2 = 0, 18 10

where prime denotes the differentiation with respect to ξ. The highest order linear and nonlinear terms in Eq. (18.10) areU
and U2. So balancing the order of U and U2 by using the concept in Eq. (18.7), we get

deg U = deg U2 ,

m + 2 = 2m m = 2
18 11

So, we assume the solution of Eq. (18.10) as Eq. (18.5) at m = 2. This may be written as

U ξ = a0 + a1
G

G2 + b1
G

G2

− 1

+ a2
G

G2

2

+ b2
G

G2

− 2

, 18 12

where a0, a1, b1, a2, and b2 are constant to be calculated.
By using Eqs. (18.6) and (18.12) in Eq. (18.10), we have

U ξ = a1μ− b1λ + 2a2μ
G

G2 − 2b2λ
G

G2

− 1

+ a1λ
G

G2

2

− b1μ
G

G2

− 2

+ 2a2λ
G

G2

3

− 2b2μ
G

G2

− 3

,

18 13

U ξ = 2a2μ
2 + 2b2λ

2 + 2a1λμ
G

G2 + 2b1λμ
G

G2

− 1

+ 8a2λμ
G

G2

2

+ 8b2μλ
G

G2

− 2

+ 2a1λ2
G

G2

3

+ 2b1μ2
G

G2

− 3

+ 6a2λ2
G

G2

4

+ 6b2μ2
G

G2

− 4

,

18 14

and

U2 ξ = a0 + a1
G

G2 + b1
G

G2

− 1

+ a2
G

G2

2

+ b2
G

G2

− 2 2

, 18 15

Substituting Eqs. (18.12)–(18.15) into Eq. (18.10), collecting the coefficients of G

G2

i

, i = 0, ± 1, ± 2,…and setting these

to zero, we obtain the following system

G

G2

0

2k2λ2b2 + 2k2μ2a2 − cλb1 + cμa1 − 6a20 − 12a1b1 − 12a2b2 + 6a0 = 0,

G

G2

1

2k2λμa1 + 2cμa2 − 12a0a1 − 12a2b1 + 6a1 = 0,

G

G2

− 1

2k2λμb1 − 2cλb2 − 12a0b1 − 12a1b2 + 6b1 = 0,

G

G2

2

8k2λμa2 + cλa1 − 12a0a2 − 6a21 + 6a2 = 0,

G

G2

− 2

8k2λμb2 − cμb1 − 12a0b2 − 6b21 + 6b2 = 0,

G

G2

3

2k2λ2a1 + 2cλa2 − 12a1a2 = 0,

G

G2

− 3

2k2μ2b1 − 2cμb2 − 12b1b2 = 0,

G

G2

4

6k2λ2a2 − 6a22 = 0,

G

G2

− 4

6k2μ2b2 − 6b22 = 0

18 16
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When we solve a system of linear equations, the point of intersection of the two lines is the solution. However, in the case
of a nonlinear system of equations, the graphs might be circles, parabolas, or hyperbolas, with several points of intersection,
and hence we may have multiple solutions. By solving the above nonlinear system, it gives different values of c, k, a0, ai, bi,
i = 1, 2 in various cases. Few of them are provided here.

Case 1:

a0 =
3
2
, a1 = 0, b1 = 0, a2 =

3λ
2μ

, b2 = 0, k = ±
3
2λμ

, c = 0, 18 17

Case 2:

a0 =
3
2
, a1 = 0, b1 = 0, a2 = 0, b2 =

3μ
2λ

, k = ±
3
2λμ

, c = 0, 18 18

Case 3:

a0 =
− 1
2

, a1 = 0, b1 = 0, a2 = −
3λ
2μ

, b2 = 0, k = ±
3
2λμ

i, c = 0, 18 19

Case 4:

a0 =
− 1
2

, a1 = 0, b1 = 0, a2 = 0, b2 = −
3μ
2λ

, k = ±
3
2λμ

i, c = 0, 18 20

Case 5:

a0 =
3
4
, a1 = 0, b1 = 0, a2 =

3λ
8μ

, b2 =
3μ
8λ

, k = ±
3
8λμ

, c = 0, 18 21

Case 6:

a0 =
1
4
, a1 = 0, b1 = 0, a2 = −

3λ
8μ

, b2 = −
3μ
8λ

, k = ±
3
8λμ

i, c = 0, 18 22

Case 7:

a0 =
3
4
, a1 = ±

1
4λμ

i, b1 = 0, a2 =
λ

4μ
, b2 = 0, k = ±

1
4λμ

, c = 5 ±
1
4λμ

i , 18 23

where λ and μ are arbitrary constants. The solution to the problem may be obtained by considering all of the cases one by
one. However, only case 1 is being considered for getting the exact solution. Similarly, one can take other cases to find the
solutions.

From Case 1: Substituting the values of constants given from Eq. (18.17) into Eq. (18.12), we obtain

U ξ =
3
2
+

3λ
2μ

G

G2

2

18 24

Substituting the general solution of Eq. (18.6), which is given in Eq. (18.8) into the above Eq. (18.24), we have the following
solution of the nonlinear time-fractional Fisher’s equationwhen λμ> 0,

U1,2 ξ =
3
2
+

3λ
2μ

μ

λ

c1 cos λμξ + c2 sin λμξ

c2 cos λμξ − c1 sin λμξ

2

, 18 25

when λμ< 0,

U3,4 ξ =
3
2
+

3λ
2μ

−
λμ

λ

c1 sinh 2 λμ ξ + c1 cosh 2 λμ ξ + c2

c1 sinh 2 λμ ξ + c1 cosh 2 λμ ξ − c2

2

, 18 26

when λ 0, μ = 0,

U5,6 ξ =
3
2
+

3λ
2μ

−
c1

λ c1ξ + c2

2

, 18 27
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where

ξ = ±
3
2λμ

x 18 28

All the above Eqs. (18.25)–(18.27) are the exact solutions of the nonlinear time-fractional Fisher’s equation for case 1.
Putting the suitable values of the constants in Eqs. (18.25)–(18.27), we obtain the traveling wave solutions of the
given model.

Example 18.2 Consider the following nonlinear time-fractional classical Burgers equation (Yildirim and Pinar 2010)

∂αu
∂tα

=
∂2u
∂x2

+ u
∂u
∂x

, 0 < α ≤ 1 18 29

Solution

Using the transformation u x, t = U ξ , ξ = kx −
ctα

Γ 1 + α
in Eq. (18.29), it reduces to

cU + k2U + kUU = 0, 18 30

where prime denotes the differentiation with respect to ξ. The highest order linear and nonlinear terms in Eq. (18.30) areU
and UU . So balancing the order of U and UU by using the concept mentioned in Eq. (18.7), we get

deg U = deg UU ,

m + 2 = m + m + 1 m = 1
18 31

So, we assume the solution of Eq. (18.30) as Eq. (18.5) at m = 1. This may be written as

U ξ = a0 + a1
G

G2 + b1
G

G2

− 1

, 18 32

where a0, a1, and b1 are constant to be calculated. By using Eqs. (18.6) and (18.32) in Eq. (18.30), we have

U ξ = a1μ− b1λ + a1λ
G

G2

2

− b1μ
G

G2

− 2

, 18 33

and

U ξ = 2a1λμ
G

G2 + 2b1λμ
G

G2

− 1

+ 2a1λ2
G

G2

3

+ 2b1μ2
G

G2

− 3

18 34

By substituting Eqs. (18.32)–(18.34) into Eq. (18.30), collecting the coefficients of
G

G2

i

, i = 0, ± 1, ± 2,… and setting

these to zero, we will have the following system of the algebraic equation:

G

G2

0

− kλa0b1 + kμ a0a1 − cλb1 + cμ a1 = 0,

G

G2

1

2k2λμa1 + kμ a21 = 0,

G

G2

− 1

2k2λμb1 − kλb21 = 0,

G

G2

2

kλa0a1 + cλa1 = 0,

G

G2

− 2

− kμ a0b1 − cμ b1 = 0,

G

G2

3

2k2λ2a1 + kλa21 = 0,

G

G2

− 3

2k2μ2b1 − kμ b21 = 0,

18 35
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By solving the above nonlinear system, various values of parameters c, k, a0, a1, b1 in different cases may be obtained as
follows:

Case 1:

a0 =
− c
k

, a1 = 0, b1 = 2kμ, k = k, c = c, 18 36

Case 2:

a0 =
− c
k

, a1 = − 2kλ, b1 = 0, k = k, c = c, 18 37

Case 3:

a0 =
− c
k

, a1 = − 2kλ, b1 = 2kμ, k = k, c = c, 18 38

where k and c are free parameters, and λ and μ are arbitrary constants. The solution to the problemmay be obtained by going
through all of the possible cases one by one. However, only case 1 is taken into account for determining the exact solution
here. Similarly, other cases can be used to have the solutions to the problem.
From Case 1: Substituting the values of constants from Eq. (18.36) into Eq. (18.32), we obtain

U ξ =
− c
k

+ 2kμ
G

G2

− 1

18 39

Substituting the general solution of Eq. (18.6), which is given in Eq. (18.8) into the above Eq. (18.39), we have the following
solution of the time-fractional classical Burgers equation

when λμ> 0,

U1,2 ξ =
− c
k

+ 2kμ
μ

λ

c1 cos λμξ + c2 sin λμξ

c2 cos λμξ − c1 sin λμξ

− 1

, 18 40

when λμ< 0,

U3,4 ξ =
− c
k

+ 2kμ −
λμ

λ

c1 sinh 2 λμ ξ + c1 cosh 2 λμ ξ + c2

c1 sinh 2 λμ ξ + c1 cosh 2 λμ ξ − c2

− 1

, 18 41

when λ 0, μ = 0,

U5,6 ξ =
− c
k

+ 2kμ −
c1

λ c1ξ + c2

− 1

, 18 42

where

ξ = k x−
ctα

Γ 1 + α
18 43

All the above Eqs. (18.40)–(18.42) are the exact solutions of the time-fractional classical Burgers equation for case 1.
Putting the suitable values of the constants in Eqs. (18.40)–(18.42), we may obtain the traveling wave solutions of the given
model.
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19

(G /G, 1/G)-Expansion Method

19.1 Introduction

In recent decades, exact travelingwave solutions to nonlinear fractional differential equations have becomemore significant
in studying complex physical and mechanical phenomena. The (G /G,1/G)-expansion method (Zayed et al. 2012; Zayed and
Alurrfi 2014; Yasar and Giresunlu 2016; Al-Shawba et al. 2018; Sirisubtawee et al. 2019; Duran 2021) has been utilized to
obtain the solutions of time and space fractional differential equations. Recently, Jumarie (2006) proposed the modified
Riemann–Liouville derivative. Using fractional complex transformation, one may convert the fractional differential equa-
tion into integer-order differential equations (Li and He 2010). The original (G /G)-expansion approach assumes that a pol-
ynomial may describe the exact solutions of nonlinear PDEs in one variable (G /G) satisfying the second-order ordinary
differential equation G (ξ) + λG (ξ) + μ = 0, where λ and μ are constants. On the other hand, the two variables (G /G,1/
G)-expansion approach is an extension of the original (G /G)-expansion method. The two variables (G /G,1/G)-expansion
approach is based on the assumption that a polynomial may describe exact traveling wave solutions to nonlinear PDEs in
the two variables (G /G) and (1/G), in which G= G(ξ) satisfies second-order linear ODE, namely, G (ξ) + λG(ξ) = μ, where λ
and μ are constants. The degree of this polynomial can be found by evaluating the homogeneous balance between the high-
est order derivatives and nonlinear terms in the given nonlinear PDEs, and the coefficients may be obtained by solving a set
of algebraic equations generated by the procedure. Recently, (Ling-xiao et al. 2010) used the two variables (G /G,1/G)-
expansion approach to find the exact solutions of the Zakharov equations. Zayed and Abdelaziz (2012) used it to find
the exact solutions of the nonlinear KdV-mKdV equation. This method is more efficient and reliable than the (G /G)
and (G /G2)-expansion methods. It also allows us to find the exact solutions of fractional differential equations without ini-
tial or boundary conditions.

19.2 Algorithm of the (G /G,1/G)-Expansion Method

This section briefly describes the main steps of this approach for solving fractional partial differential equations (PDEs).
In order to understand the (G /G,1/G)-expansion method (Zayed et al. 2012; Zayed and Alurrfi 2014; Yasar and Giresunlu

2016; Al-Shawba et al. 2018; Sirisubtawee et al. 2019; Duran 2021), we consider the following nonlinear fractional PDE in
two independent variables x and t of the type

Q u, ux , uxx ,…,Dα
t u,… = 0, 0 < α ≤ 1, 19 1

where u = u(x, t) is an unknown function, and Q is a polynomial of u and its partial fractional derivatives, in which the
highest order derivatives and the nonlinear terms are involved.
Step 1. First, the traveling wave variable is considered as (Li and He 2010)

u x, t = U ξ , 19 2

ξ = kx−
ctα

Γ 1 + α
, 19 3

where c and k are nonzero constants to be determined later. By using the chain rule (Güner et al. 2015), we have
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Dα
t u = ΔtuζD

α
t ζ,

Dα
xu = ΔxuζD

α
xζ,

whereΔt andΔx are the fractal indexes (Güner et al. 2015).Without loss of generality, we can considerΔt=Δx= κ, where κ is
a constant. Using Eqs. (19.2) and (19.3), Eq. (19.1) can be rewritten in the following nonlinear ordinary differential equation
(ODE) form

P U, kU , k2U ,…, − cU ,… = 0, 19 4

where P is a polynomial of U(ξ) and its various derivatives. The prime (‘) denotes the derivative with respect to ξ. The fol-
lowing ideas must be understood before going through the next steps of the (G /G,1/G)-expansion approach.
Let us consider the following linear ODE:

G ξ + λG ξ = μ, 19 5

where the prime notation ( ) denotes the derivative with respect to ξ and λ, μ are constants. Next, we set (Ling-xiao et al. 2010;
Zayed and Abdelaziz 2012)

ϕ ξ =
G ξ

G ξ
, and ψ ξ =

1
G ξ

19 6

Equations (19.5) and (19.6) can be turned into a system of two nonlinear ODEs as follows:

ϕ = −ϕ2 + μψ − λ, and ψ = −ϕψ 19 7

The general solutions of Eq. (19.5) may be classified into the following three cases,
Case 1: If λ< 0, then the general solution of Eq. (19.5) is written as (Zayed et al. 2012; Zayed and Alurrfi 2014; Yasar and

Giresunlu 2016; Al-Shawba et al. 2018; Sirisubtawee et al. 2019; Duran 2021)

G ξ = c1 sinh ξ − λ + c2 cosh ξ − λ +
μ

λ
, 19 8

and we have

ψ2 =
− λ

λ2σ1 + μ2
ϕ2 − 2μψ + λ , 19 9

where c1 and c2 are arbitrary constants and σ1 = c21 − c22.
Case 2: If λ> 0, then the general solution of Eq. (19.5) can be written as (Zayed et al. 2012; Zayed and Alurrfi 2014; Yasar

and Giresunlu 2016; Al-Shawba et al. 2018; Sirisubtawee et al. 2019; Duran 2021)

G ξ = c1 sin ξ λ + c2 cos ξ λ +
μ

λ
, 19 10

and we have the following relation

ψ2 =
λ

λ2σ2 − μ2
ϕ2 − 2μψ + λ , 19 11

where c1 and c2 are two arbitrary constants and σ2 = c21 + c22.
Case 3: If λ= 0, then the general solution of Eq. (19.5) can be provided as (Zayed et al. 2012; Zayed and Alurrfi 2014; Yasar

and Giresunlu 2016; Al-Shawba et al. 2018; Sirisubtawee et al. 2019; Duran 2021)

G ξ =
μ

2
ξ2 + c1ξ + c2, 19 12

and the corresponding relation is

ψ2 =
1

c21 − 2μ c2
ϕ2 − 2μψ , 19 13

where c1 and c2 are two arbitrary constants.
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Step 2. Let us assume that the solution to Eq. (19.4) can be expressed by a polynomial of two variables φ and ψ , as follows:

U ξ = a0 +
m

i = 1

ai ϕ
i ξ + bi ϕ

i− 1 ξ ψ ξ , 19 14

where a0, ai, bi (i= 1, 2,…,m) are constants to be determined later with a2m + b2m 0and the functions ϕ=ϕ(ξ) and ψ = ψ(ξ)
satisfy the equation Eqs. (19.6) and (19.7).
Step 3. The positive integer m in Eq. (19.14) may be calculated by considering the homogenous balance between the

highest order derivatives and the nonlinear terms in Eq. (19.4). More precisely, we define the degree of U(ξ) as deg[U
(ξ)] = m, which leads to the degrees of the other expressions as follows (Sirisubtawee et al. 2019):

deg
dpU
dξp

= m + p,

deg Us dpU
dξp

q

= ms + q p + m

19 15

Accordingly, we can obtain the value ofm in Eq. (19.14). Suppose that the balance numberm of any nonlinear equation is
not a positive integer (for example, a fraction or a negative integer). In that case, the specific transformations for U(ξ) in
Eq. (19.4) are used to get a new equation in terms of the new function W(ξ) with a positive integer balance number (see
details in (Zayed and Alurrfi 2016)).
Step 4. Substituting Eq. (19.14) into Eq. (19.4) and using Eqs. (19.7) and (19.9), the function P can be transferred into a

polynomial in ϕ and ψ , in which the degree of ψ is not larger than one. Collecting the coefficients of like powers of ϕi (i = 0,
1,…), ψ j(j= 0, 1), ϕiψ (i= 1, 2…), and equating each coefficient to zero, we obtain a set of algebraic equations for ϕ, ψ , λ, μ, k,
c, a0, ai, and bi (i= 1, 2,…,m). Solving the algebraic equations system, we obtain the values of the parameters k, c, a0, ai, and
bi (i= 1, 2,…,m) for case 1. In this step, the hyperbolic functions are used to represent the resulting traveling wave solutions
with the transformation given in Eqs. (19.2) and (19.3).
Step 5. Similar to Step 4, we can find the exact solutions of Eq. (19.1) by substituting Eq. (19.14) into Eq. (19.4) with the

help of Eqs. (19.7) and (19.11) for λ> 0. The resulting solutions are written in the form of trigonometric functions.
Step 6. Again, substituting Eq. (19.14) into Eq. (19.4) with the aid of Eqs. (19.7) and (19.13) for λ = 0, we get the exact

solutions of Eq. (19.1). The obtained exact solutions are expressed as rational functions.
Note: The two-variable (G /G,1/G)-expansion method reduces to the (G /G)- expansion method by substituting μ = 0 in

Eq. (19.5) and bi = 0 in Eq. (19.14). So, the (G /G)- expansion method is a particular case of the (G /G,1/G)-expansion
method.
One example problem is given in the following section to demonstrate the use of the (G /G,1/G)-expansion method to

solve nonlinear fractional differential equations.

19.3 Illustrative Examples

We apply the present method to solve a nonlinear time-fractional classical Burgers equation in Example 19.1.

Example 19.1 Consider the following nonlinear time-fractional classical Burgers equation (Yildirim and Pinar 2010)

∂αu
∂tα

=
∂2u
∂x2

+ u
∂u
∂x

, 0 < α ≤ 1 19 16

Solution

Using the transformation u x, t = U ξ , ξ = kx −
ctα

Γ 1 + α
in Eq. (19.16), it reduces to

cU + k2U + kUU = 0, 19 17

where prime denotes the differentiation with respect to ξ. Integrating Eq. (19.17) with respect to ξ, it gives

cU + k2U +
k
2
U2 + A = 0, 19 18
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where A is an integration constant, and for simplicity, we have considered A = 0. So, Eq. (19.18) is now rewritten as

cU + k2U +
k
2
U2 = 0 19 19

The highest order linear and nonlinear terms in Eq. (19.19) areU andU2. So balancing the order ofU andU2 by using the
concept mentioned in Eq. (19.15), we get

deg U = deg U2 ,

m + 1 = 2m m = 1
19 20

So, we assume the solution of Eq. (19.19) as Eq. (19.14) at m = 1. This can be written as

U ξ = a0 + a1 ϕ ξ + b1 ψ ξ , 19 21

where a0, a1, and b1 are constants to be calculated. As we discussed earlier in this method, three solution cases are obtained,
which are now addressed as follows:
Case I. When λ< 0 (hyperbolic function solutions)
By substituting Eq. (19.21) into Eq. (19.19) and utilizing Eqs. (19.7) and (19.9), we have

U ξ = − a1ϕ
2 + a1μψ − a1λ− b1ϕψ , 19 22

and

U2 ξ = a20 + a21ϕ
2 + 2a0a1ϕ + 2a1b1ϕψ + 2a0b1ψ +

2b21μ λψ

λ2σ1 + μ2
−

b21 λϕ
2

λ2σ1 + μ2
−

b21 λ
2

λ2σ1 + μ2
19 23

Substituting Eqs. (19.21)–(19.23) into Eq. (19.19), collecting the coefficients of ϕi, ψ i, ϕiψ (i = 1, 2, …) and setting these to
zero subject to the condition that λ2σ1 + μ2 0, we obtain the following system

ϕ2 − k2a1 +
k a21
2

−
k b21λ

2 λ2σ1 + μ2
= 0,

ϕψ − k2b1 + k a1b1 = 0,

ϕ k a0a1 + c a1 = 0,

ψ k2a1μ + cb1 + k a0b1 +
k b21λμ

λ2σ1 + μ2
= 0,

Constant − k2a1λ + ca0 +
k a20
2

−
k b21λ

2

2 λ2σ1 + μ2
= 0

19 24

When we solve a system of linear equations, the point of intersection of the two lines is the solution. However, in the case
of a nonlinear system of equations, the graphs might be circles, parabolas, or hyperbolas, with several points of intersection,
and hence wemay havemultiple solutions. By solving the above nonlinear system, it gives different values of c, k, a0, a1, b1 in
various cases. Some of them are provided here.
Result 1:

a0 =
− 2c
k

, a1 = 0, b1 = 0, c = c, k = k, 19 25

where c and k are free parameters. Since a21 + b21 = 0, so Eq. (19.25) is not taken into account according to step 2.
Result 2:

a0 =
± b1λ

λ2σ1 + μ2
, a1 =

b1λ

λi λ2σ1 + μ2
, b1 = b1, c =

b21λ
3 2i

λ2σ1 + μ2
, k =

± λb1i

λ2σ1 + μ2
, 19 26

where b1 is a free parameter, λ, μ are arbitrary constants, and σ1 = c21 − c22, where c1 and c2 are arbitrary constants. By sub-
stituting Eq. (19.26) into Eq. (19.21) and using Eqs. (19.6) and (19.8), we get the exact solution of Eq. (19.16) as follows:

U ξ =
± b1λ

λ2σ1 + μ2
+

b1λ c1 cosh ξ − λ + c2 sinh ξ − λ + b1 λ2σ1 + μ2

λ2σ1 + μ2 c1 sinh ξ − λ + c2 cosh ξ − λ +
μ

λ

, 19 27
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where

ξ =
± λb1i

λ2σ1 + μ2
x−

b21λ
3
2i

λ2σ1 + μ2
tα

Γ 1 + α
19 28

In particular, by setting c1 = 0, c2 > 0, and μ = 0 in Eq. (19.27), we have the solitary solution

U ξ = b1i ± b1i tanh ξ − λ + b1sech ξ − λ , 19 29

While, if c2 = 0, c1 > 0, and μ = 0, we have the solitary solution

U ξ = b1 b1coth ξ − λ + b1csch ξ − λ 19 30

Case II. When λ> 0 (trigonometric function solutions)
By inserting Eq. (19.21) into Eq. (19.19) and along with the use of Eqs. (19.7) and (19.11), we have

U ξ = − a1ϕ
2 + a1μψ − a1λ− b1ϕψ , 19 31

and

U2 ξ = a20 + a21ϕ
2 + 2a0a1ϕ + 2a1b1ϕψ + 2a0b1ψ −

2b21μ λψ

λ2σ2 − μ2
+

b21 λϕ
2

λ2σ2 − μ2
+

b21 λ
2

λ2σ2 − μ2
19 32

Substituting Eq. (19.21), and Eqs. (19.31)–(19.32) into Eq. (19.19), collecting the coefficients of ϕi, ψ i, ϕiψ (i = 1, 2, …) and
setting these to zero subject to the condition λ2σ2− μ2 0, we obtain the following system

ϕ2 − k2a1 +
k a21
2

+
k b21λ

2 λ2σ2 − μ2
= 0,

ϕψ − k2b1 + k a1b1 = 0,

ϕ k a0a1 + c a1 = 0,

ψ k2a1μ + cb1 + k a0b1 −
k b21λμ

λ2σ2 − μ2
= 0,

Constant − k2a1λ + ca0 +
k a20
2

+
k b21λ

2

2 λ2σ2 − μ2
= 0

19 33

By solving the above nonlinear system yields different values of c, k, a0, a1, b1 in various cases. Some of them are again
listed below:
Result 1:

a0 =
− 2c
k

, a1 = 0, b1 = 0, c = c, k = k, 19 34

where c and k are free parameters. Since a21 + b21 = 0, so Eq. (19.25) is not considered.
Result 2:

a0 =
± b1λ i

λ2σ2 − μ2
, a1 =

± b1λ
1 2

λ2σ2 − μ2
, b1 = b1, c =

b21λ
3 2i

λ2σ2 − μ2
, k =

± b1 λ

λ2σ2 − μ2
, 19 35

where b1 is a free parameter, λ, μ are arbitrary constants, and σ2 = c21 + c22, where c1 and c2 are arbitrary constants. Plugging
Eq. (19.35) into Eq. (19.21) and using Eqs. (19.6) and (19.10), we have the exact solution of Eq. (19.16) as follows:

U ξ =
± b1λ i

λ2σ2 − μ2
+

± b1λ c1 cos ξ λ − c2 sin ξ λ + b1 λ2σ2 − μ2

λ2σ2 − μ2 c1 sin ξ λ + c2 cos ξ λ +
μ

λ

, 19 36

where

ξ =
± b1 λ

λ2σ2 − μ2
x−

b21λ
3
2i

λ2σ2 − μ2
tα

Γ 1 + α
19 37
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In particular, by setting c1 = 0, c2 > 0, and μ = 0 in Eq. (19.36), we have the solitary solution

U ξ = ± b1i b1 tanh ξ λ + b1sech ξ λ , 19 38

While, if c2 = 0, c1 > 0, and μ = 0, we have the solitary solution

U ξ = ± b1i ± b1coth ξ λ + b1csch ξ λ 19 39

Case III. When λ = 0 (rational function solutions)
By substituting Eq. (19.21) into Eq. (19.19) along with the use of Eqs. (19.7) and (19.13), we have

U ξ = − a1ϕ
2 + a1μψ − b1ϕψ , 19 40

and

U2 ξ = a20 + a21ϕ
2 + 2a0a1ϕ + 2a1b1ϕψ + 2a0b1ψ −

2b21μ ψ
c21 − 2μ c22

+
b21 ϕ

2

c21 − 2μ c22
19 41

Substituting Eq. (19.21) and Eqs. (19.40)–(19.41) into Eq. (19.19), collecting the coefficients of φi, ψ i, φiψ (i = 1, 2, …) and
setting these to zero provide that c21 − 2μ c22 0, we obtain the following system

ϕ2 − k2a1 +
k a21
2

+
k b21

2 c21 − 2μ c22
= 0,

ϕψ − k2b1 + k a1b1 = 0,

ϕ k a0a1 + c a1 = 0,

ψ k2a1μ + cb1 + k a0b1 −
k b21μ

c21 − 2μ c22
= 0,

Constant ca0 +
k a20
2

= 0

19 42

By solving the above nonlinear system yields the following results:
Result 1:

a0 =
− 2c
k

, a1 = 0, b1 = 0, c = c, k = k, 19 43

where c and k are free parameters. Since a21 + b21 = 0, so Eq. (19.43) may not be considered.
Result 2:

a0 = 0, a1 = k, b1 = ± c21 − 2μ c22, c = 0, k = k, 19 44

where k is a free parameter, and c1, μ, and c2 are arbitrary constants. Plugging Eq. (19.44) into Eq. (19.21) and using
Eqs. (19.6) and (19.12), we obtain the exact solution of Eq. (19.16) as follows:

U ξ =
k μ ξ + c1 ± c21 − 2μ c22

μ

2
ξ2 + c1ξ + c2

, 19 45

where

ξ = kx 19 46

In particular, by setting c1 = 0, c2 > 0, and μ = 0 in Eq. (19.45), we have the solitary solution

U ξ = 0, 19 47

while, if c2 = 0, c1 > 0, and μ = 0, we have the solitary solution

U ξ =
k ± 1
ξ

19 48
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All the above Eqs. (19.27), (19.36), and (19.45) are the exact solutions of the nonlinear time-fractional classical Burgers
equation. Putting the suitable values of the constants in these equations, we may obtain the traveling wave solutions of the
given model.
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20

The Modified Simple Equation Method

20.1 Introduction

In the last few years, the modified simple equation (MSE) method, which is an analytical method, has become very popular.
This approach is robust because it uses a general solution form defined by the finite series sum containing the unknown
function. The characteristic of the technique enables the derivation of new and more general solitary wave solutions by
substituting particular values for arbitrary coefficients in the exact solutions. The methods, such as the modified extended
Tanh function method, the sine-cosine method, the generalized Kudryashov method, the improved F-expansion method,
etc., work on the principle of certain particular preset functions or a solution to the auxiliary equation. These approaches
require lengthy computation to solve the system of algebraic equations. However, in theMSEmethod, any preset function is
not predefined, or a solution of any predetermined equation is not considered. As a result, this strategymay yield some novel
solutions. TheMSEmethod is recently being used to obtain exact solutions to a variety of fractional partial differential equa-
tions, including the space–time fractional modified regularized long-wave equation, the space–time fractional modified
Korteweg-de Vries equation, the space–time fractional coupled Burgers’ equations (Kaplan et al. 2015), the nonlinear
time-fractional Sharma-Tasso-Oliver equation (Zayed et al. 2016), the generalized fractional reaction Duffing equation,
and the fractional nonlinear Cahn-Allen equation (Ali et al. 2018). The exact solutions of the time-fractional biological pop-
ulation model equation and nonlinear fractional Klein–Gordon equation have been obtained by Kaplan and Bekir (2016).
Bakicierler et al. (2021) used theMSEmethod to find some new traveling wave solutions of the nonlinear conformable time-
fractional approximate long water wave equation and coupled time-fractional Boussinesq–Burger equation. Other related
works may be found in (Taghizadeh et al. 2012; Khan et al. 2013; Taghizadeh et al. 2013; Khan and Akbar 2014; Triki
et al. 2015).

20.2 Procedure of the Modified Simple Equation Method

The main steps of this approach for solving fractional partial differential equations are briefly summarized in this section.
In order to understand the MSE method (Kaplan et al. 2015; Kaplan and Bekir 2016; Zayed et al. 2016; Ali et al. 2018;

Bakicierler et al. 2021), we consider the following nonlinear fractional partial differential equation in two independent vari-
ables x and t of the type

Q u, ux , uxx ,…,Dα
t u,… = 0, 0 < α ≤ 1, 20 1

where u = u(x, t) is an unknown function, and Q is a polynomial of u and its partial fractional derivatives, in which the
highest order derivatives and the nonlinear terms are involved.
Step 1. We use the nonlinear fractional complex transformation (Li and He 2010)

u x, t = U ξ , ξ = kx +
ctα

Γ 1 + α
, 20 2

where c (angular wave number) and k (wave frequency) are nonzero constants to be determined later. By using the chain
rule (Güner et al. 2015), we have

Dα
t u = ΔtuζD

α
t ζ, 20 3
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where Δt is the fractal index (Güner et al. 2015). Without loss of generality, we may consider Δt = κ, where κ is a constant.
Using Eq. (20.2), Eq. (20.1) reduces to the following nonlinear ODE form

P U, kU , k2U ,…, cU ,… = 0, 20 4

where the =
d
dξ

, =
d2

dξ2
, and so on.

Step 2. Equation (20.4) is integrated as long as all terms contain derivatives. This procedure ends when one of the terms
includes no derivatives. The associated integration constants are taken to be zero.
Step 3.We suppose that the MSE method is based on the assumption that the solution of Eq. (20.4) may be expressed as

(Taghizadeh et al. 2012; Khan et al. 2013; Taghizadeh et al. 2013; Khan and Akbar 2014; Kaplan et al. 2015; Triki et al. 2015;
Kaplan and Bekir 2016; Zayed et al. 2016; Ali et al. 2018; Bakicierler et al. 2021)

U ξ =
N

i = 0

Ai
ψ ξ

ψ ξ

i

, AN 0, 20 5

where Ai (i= 0, 1, 2, …, N) are constants to be determined and ψ = ψ(ξ) is an unknown function to be determined later such
that ψ (ξ) 0. In the tanh function method, the (G /G)-expansion method, and the exp function method, etc., the solutions
are represented in terms of some predefined functions. However, the MSE method does not represent the solution in terms
of any predefined functions or ψ(ξ) does not represent a solution of any predefined equation. As a result, this strategy may
lead to identifying some new solutions.
Step 4. The positive integerN in Eq. (20.5) may be calculated by considering the homogenous balance between the highest

order derivatives and the nonlinear terms arising in Eq. (20.4). More precisely, we define the degree ofU(ξ) as deg[U(ξ)] =N,
which leads to the degrees of the other expressions as follows (Gepreel and Omran 2012):

deg
dpU
dξp

= N + p,

deg Us dpU
dξp

q

= Ns + q p + N

20 6

Therefore, we can obtain the value of N in Eq. (20.5).
Step 5.Next, we substitute Eq. (20.5) into Eq. (20.4), calculate all necessary derivativesU ,U ,… of the unknown function

U, and account for the function ψ(ξ). As a result of the substitutions, we get a polynomial of ψ−i (i = 0, 1, 2, …). In this
polynomial, all the terms of the same power of ψ−i (i = 0, 1, 2, …) are gathered. We then equate with zero all the coefficients
of this polynomial. This operation yields a system of algebraic equations that can be solved to find Ai and ψ(ξ). Conse-
quently, we can get the exact explicit solutions of Eq. (20.1).
The following section offers two examples that show the applicability of the MSE approach for solving nonlinear frac-

tional differential equations.

20.3 Application Problems

Here, we apply the present method to solve a nonlinear time-fractional KdV equation in Example 20.1 and the mKdV equa-
tion in Example 20.2.

Example 20.1 We consider the following nonlinear time-fractional KdV equation (Wazwaz 2009)

∂αu
∂tα

+ 6u
∂u
∂x

+
∂3u
∂x3

= 0, t > 0, x R, 0 < α ≤ 1 20 7

208 20 The Modified Simple Equation Method



Solution

Equation (20.7) may be reduced to the ordinary differential equation in ξ by using the transformation

u x, t = U ξ , ξ = kx−
ctα

Γ 1 + α
as

− cU + 6 kUU + k3U = 0, 20 8

where prime denotes the differentiation with respect to ξ. Integrating Eq. (20.8) with respect to ξ and substituting the inte-
gration constant to zero, we have

− cU + 3 kU2 + k3U = 0 20 9

The highest order derivative and nonlinear terms in Eq. (20.9) areU andU2. So balancing the order ofU andU2 by using
the concept Eq. (20.6), we get

deg U = deg U2 ,

N + 2 = 2N N = 2
20 10

So, for N = 2, the solution of Eq. (20.9) may be written as

U ξ =
2

i = 0

Ai
ψ ξ

ψ ξ

i

= A0 + A1
ψ

ψ

1

+ A2
ψ

ψ

2

, 20 11

where A0, A1, and A2 are constants such that A2 0 and ψ(ξ) is the unknown function to be determined. From Eq. (20.11),
we have

U ξ = 6A2ψ
4

ψ − 4 + 2A1ψ
3
− 10A2ψ

2
ψ ψ − 3

+ 2A2ψ
2 + 2A2ψ ψ − 3A1ψ ψ ψ − 2 + A1ψ ψ − 1

20 12

By plugging Eqs. (20.11) and (20.12) into Eq. (20.9), and then equating the coefficients of ψ−i, i= 0,…, 4 to zero, we obtain
the following system:

ψ0 3kA2
0 − cA0 = 0, 20 13

ψ − 1 k3A1ψ + 6kA0A1ψ − cA1ψ = 0, 20 14

ψ − 2 − 3k3A1ψ ψ + 2k3A2ψ ψ + 2k3A2ψ
2 + 6kA0A2ψ

2 + 3kA2
1ψ

2
− cA2ψ

2 = 0, 20 15

ψ − 3 2k3A1ψ
3
− 10k3A2ψ

2
ψ + 6kA1A2ψ

3 = 0, 20 16

ψ − 4 6k3A2ψ
4 + 3kA2

2ψ
4 = 0 20 17

Solving Eqs. (20.13), (20.14), and (20.17), we deduce four cases of solutions as

Set 1: A0 = 0, A1 = 0, A2 = 0, Set 2: A0 = 0, A1 = 0, A2 = − 2k2,

Set 3: A0 =
c
3k

, A1 = 0, A2 = 0, Set 4: A0 =
c
3k

, A1 = 0, A2 = − 2k2.

According to Eq. (20.5), Sets 1 and 3 are not acceptable as A2 = 0. Now, we have two cases

Case 1: A0 = 0, A1 = 0, A2 = − 2k2.
In this case, from Eq. (20.16), we obtain the following three sets of solutions

ψ ξ = c1ξ + c2, 20 18

ψ ξ = c1
− 1− 3i

2
x + c2, 20 19

ψ ξ = c1
− 1 + 3i

2
x + c2, 20 20

where c1 and c2 are arbitrary constants of integration.
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By considering Eq. (20.18), the solution of Eq. (20.7) may be written as

u x, t = A0 + A1
ψ

ψ

1

+ A2
ψ

ψ

2

= − 2k2
c1

c1ξ + c2

2

, 20 21

where ξ = kx−
ctα

Γ 1 + α
.

Similarly, we can consider Eqs. (20.19) and (20.20) to obtain other solutions of the given model.

Case 2: A0 =
c
3k

, A1 = 0, A2 = − 2k2.

In this case, we get the same sets of solutions as Case 1, viz. Eqs. (20.18)–(20.20). So, using Eq. (20.18), we have

u x, t = A0 + A1
ψ

ψ

1

+ A2
ψ

ψ

2

=
c
3k

− 2k2
c1

c1ξ + c2

2

, ξ = kx −
ctα

Γ 1 + α
20 22

Other forms of solutions of the model can be determined by using Eqs. (20.19) and (20.20).
Putting the suitable values of the constants in Eqs. (20.21) and (20.22), we obtain the traveling wave solutions of the time-

fractional KdV equation.

Example 20.2 Let us consider the following nonlinear time-fractional mKdV equation (Wazwaz 2009)

∂αu
∂tα

− 6u2
∂u
∂x

+
∂3u
∂x3

= 0, 0 < α ≤ 1, t > 0 20 23

Solution

The traveling wave transformation Eq. (20.2) reduces Eq. (20.23) to the following ODE,

− cU − 6 kU2U + k3U = 0 20 24

Integrating Eq. (20.24) with respect to ξ and substituting integration constant to zero, we have

− cU − 2 kU3 + k3U = 0 20 25

The highest order derivative and nonlinear terms in Eq. (20.25) areU andU3. So balancing the order ofU andU3, we get

deg U = deg U3 ,

N + 2 = 3N N = 1
20 26

So, we assume the solution of Eq. (20.25) at N = 1. This may be written as

U ξ =
1

i = 0

Ai
ψ ξ

ψ ξ

i

= A0 + A1
ψ

ψ
, 20 27

where A0 and A1 are constants such that A1 0. Now, from Eq. (20.27), we get

U ξ = 2A1ψ
3 ψ − 3 − 3A1ψ ψ ψ − 2 + A1ψ ψ − 1 20 28

By substituting Eqs. (20.27) and (20.28) into Eq. (20.25), and equating the coefficients of ψ−i, i = 0, …, 3 to zero, we get the
following system of equations

ψ0 − 2kA3
0 − cA0 = 0, 20 29

ψ − 1 k3A1ψ − 6kA2
0A1ψ − cA1ψ = 0, 20 30

ψ − 2 − 3k3A1ψ ψ − 6kA0A
2
1ψ

2 = 0, 20 31

ψ − 3 2k3A1ψ
3
− 2kA3

1ψ
3 = 0, 20 32
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From Eqs. (20.29), and (20.32), we have

Set 1: A0 = 0, A1 = 0, Set 2: A0 = 0, A1 = k, Set 3: A0 = 0, A1 = − k,

Set 4: A0 =
− c
2k

, A1 = 0, Set 5: A0 =
− c
2k

, A1 = k, Set 6: A0 =
− c
2k

, A1 = − k.

Solution sets 1 and 4 contradict the assumption that A2 0. Thus, these two sets are rejected. Now, we have four cases.

Case 1: If A0 = 0, A1 = k, then from Eq. (20.30), we get

ψ ξ = c1 + c2 exp
c

k
3
2

ξ + c3 exp −
c

k
3
2

ξ , 20 33

where c1, c2, and c3 are arbitrary constants.
So, the solution of Eq. (20.23) can be written as

u x, t = A0 + A1
ψ

ψ
=

c
k

c2 exp
c

k
3
2
ξ − c3 exp −

c

k
3
2
ξ

c1 + c2 exp
c

k
3
2
ξ + c3 exp −

c

k
3
2
ξ

20 34

If we put c1 = 0, c2 = c3, into Eq. (20.34), we obtain the kink solitary 1-wave solution

u x, t =
c
k
tanh

c

k
3
2
ξ , 20 35

while, if we set c1 = 0, c2 = − c3, then we get the anti-kink solitary 1-wave solution

u x, t =
c
k
cot

c

k
3
2
ξ , ξ = kx−

ctα

Γ 1 + α
20 36

Case 2: A0 =
− c
2k

,A1 = k.

In this case, from Eq. (20.31), we obtain

ψ ξ = c1 + c2 exp − −
2c

k
5
2
ξ , 20 37

So, the solution of the given model Eq. (20.23) can be written as

u x, t = A0 + A1
ψ

ψ
=

− c
2k

+ −
2c
k

c2 cosh −
2c

k
5
2
ξ − c2 sinh −

2c

k
5
2
ξ

c1 + c2 cosh −
2c

k
5
2
ξ − c2 sinh −

2c

k
5
2
ξ

, 20 38

where ξ = kx−
ctα

Γ 1 + α
.

Likewise, we may derive various solutions using solution sets 3 and 6.
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21

Sine-Cosine Method

21.1 Introduction

Nonlinear fractional differential equations have been studied using several approaches in recent decades. These methods
may require a significant size of computational work. Several strategies have been developed to find single soliton solutions
of the fractional models. It may be noted that there is no single approach that can be applied to all nonlinear fractional
models. The sine-cosine method (Wazwaz 2004b, 2004c, 2005, 2017) proposed by Wazwaz (Wazwaz 2004a) is a powerful
strategy that has recently been used in various researches. Using the sine-cosine approach, Sabi’u et al. (2019) found the
exact solution for the (3 + 1) conformable space–time fractional modified Korteweg–de-Vries equations. Alquran (2012) has
obtained the periodic and bell-shaped solitons solutions to the Benjamin-Bona-Mahony, the Gardner equations, and the
Cassama-Holm equation. Yusufoglu and Bekir (2006) have successfully derived many new families of exact traveling wave
solutions of the (2 + 1)-dimensional Konopelchenko–Dubrovsky equations and the coupled nonlinear Klein–Gordon and
Nizhnik–Novikov–Veselov equations. Bekir (2008) successfully established exact traveling wave solutions of the symmetric
regularized long-wave (SRLW) and Klein–Gordon–Zakharov (KGZ) equations with the help of this method. The sine-cosine
method has been used to solve a broad range of nonlinear problems. Various nonlinear dispersive and dissipative equations
have also been successfully solved using this method.

21.2 Details of the Sine-Cosine Method

The main steps of this method for solving fractional partial differential equations are briefly described in this section.
In order to understand the sine-cosine method (Wazwaz 2004a, 2004b, 2004c, 2005, 2017), we consider the following non-

linear fractional partial differential equation in two independent variables x and t of the type

Q u, ux , uxx , uxxx…,Dα
t u,… = 0, 0 < α ≤ 1, 21 1

where u = u(x, t) is an unknown function, and Q is a polynomial of u and its partial fractional derivatives, in which the
highest order derivatives and the nonlinear terms are involved.
Step 1. First, the traveling wave variable is considered as (Li and He 2010)

u x, t = u ξ , 21 2

ξ = kx−
ctα

Γ 1 + α
, 21 3

where c and k are nonzero constants to be determined later.
Step 2. Next, we use the following results:

∂αu
∂tα

= − c
du
dξ

,
∂u
∂x

= k
du
dξ

,
∂2u
∂x2

= k2
d2u

dξ2
,
∂3u
∂x3

= k3
d3u

dξ3
, 21 4
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and so on for other derivatives. Using Eq. (21.4), Eq. (21.1) can be rewritten in the following nonlinear ordinary differential
equation (ODE) form

P u, ku , k2u , k3u …, − cu ,… = 0, 21 5

where P is a polynomial of u(ξ) and its various derivatives. The prime ( ) denotes the derivative with respect to ξ.
Step 3. The ordinary differential equation Eq. (21.5) is integrated as many times as needed, and the integration constant is

set to zero.
Step 4. The solution of Eq. (21.5) may be expressed in the form (Wazwaz 2004b, 2004c, 2005, 2017)

u x, t =
λ sin β μξ , ξ ≤

π

μ
,

0, otherwise,
21 6

or in the form

u x, t =
λ cos β μξ , ξ ≤

π

2μ
,

0, otherwise,
21 7

where λ, μ, and β are parameters that are to be determined.
Step 5. As a consequence, the derivatives of Eq. (21.6) becomes

u ξ = λ sin β μξ ,

un ξ = λn sin nβ μξ ,

un ξ = nμβλn cos μξ sin nβ− 1 μξ ,

un ξξ = − n2μ2β2λn sin nβ μξ + nμ2λnβ nβ− 1 sin nβ− 2 μξ

21 8

The derivatives of Eq. (21.7) may be written as

u ξ = λ cos β μξ ,

un ξ = λn cos nβ μξ ,

un ξ = − nμβλn sin μξ cos nβ− 1 μξ ,

un ξξ = − n2μ2β2λn cos nβ μξ + nμ2λnβ nβ− 1 cos nβ− 2 μξ ,

21 9

and so on for the other derivatives.
Step 6.We substitute Eq. (21.8) or Eq. (21.9) into Eq. (21.5) and balance the terms of the sine functions when Eq. (21.8) is

used, or balance the terms of the cosine functions when Eq. (21.9) is used.
Step 7. Collecting all terms with the same power in cosk(μξ) or sink(μξ) and equating each coefficient to zero, we obtain a

set of algebraic equations in λ, μ, β, k, and c. Solving the algebraic equations system, we obtain the values of the parameters λ,
μ, and β.
The key benefits of this method are that it may be directly applied to any differential problems. Another benefit of the

approach is its ability to reduce the size of computational work.

21.3 Numerical Examples

We apply the present method to solve the nonlinear time-fractional Korteweg de Vries (KdV) equation in Example 21.1 and
the modified Korteweg de Vries (mKdV) equation in Example 21.2.

Example 21.1 Consider the following nonlinear time-fractional KdV equation (Wazwaz 2009)

∂αu
∂tα

+ 6u
∂u
∂x

+
∂3u
∂x3

= 0, 0 < α ≤ 1, t > 0 21 10
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Solution

Using the transformation u x, t = u ξ , ξ = kx−
ctα

Γ 1 + α
in Eq. (21.10), it reduces to

− cu + 6ku u + k3u = 0, 21 11

where prime denotes the differentiation with respect to ξ. Integrating Eq. (21.11) with respect to ξ and substituting the inte-
gration constant to zero, it gives

− cu + 3ku2 + k3u = 0 21 12

Using Eq. (21.8), we have

u ξ = λ sin β μξ , 21 13

u2 ξ = λ2 sin 2β μξ , 21 14

and

u ξ = − μ2β2λ sin β μξ + μ2λβ β− 1 sin β− 2 μξ 21 15

Plugging Eqs. (21.13)–(21.15) into Eq. (21.12), we have

k3λμ2β β− 1 sin β− 2 μξ + − k3λμ2β2 − cλ sin β μξ + 3kλ2 sin 2β μξ = 0 21 16

We use the balance between the exponents of the sine functions. This indicates that Eq. (21.16) is satisfied only if the
following algebraic equations are valid.

β− 1 0,

β− 2− 2β = 0,

− 3kλ2 − k3λμ2β β− 1 = 0,

− cλ− k3λμ2β2 = 0

21 17

Solving Eq. (21.17), it gives

β = − 2,

μ =
1

2 k3
− c,

λ =
c
2k

21 18

Similarly, using cosine function Eq. (21.9), we have

u ξ = λ cos β μξ , 21 19

u2 ξ = λ2 cos 2β μξ , 21 20

and

u ξ = − μ2β2λ cos β μξ + μ2λβ β− 1 cos β− 2 μξ 21 21

Plugging Eqs. (21.19)–(21.21) into Eq. (21.12), we have

k3λμ2β β− 1 cos β− 2 μξ + − k3λμ2β2 − cλ cos β μξ + 3kλ2 cos 2β μξ = 0 21 22

Equating the exponents and coefficients of each pair of cosine functions, we obtain the same system of algebraic equations
Eq. (21.17) and solutions Eq. (21.18).
So, the solution of Eq. (21.10) in terms of sine and cosine functions, respectively, may be written as

u x, t =
c
2k

csc2
1

2 k3
− c kx− c

tα

Γ 1 + α
, kx − c

tα

Γ 1 + α
≤

π

μ
,

0, otherwise,
21 23
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and

u x, t =
c
2k

sec 2 1

2 k3
− c kx− c

tα

Γ 1 + α
, kx− c

tα

Γ 1 + α
≤

π

2μ
,

0, otherwise
21 24

Example 21.2 Consider the following nonlinear time-fractional mKdV equation (Wazwaz 2009)

∂αu
∂tα

− 6u2
∂u
∂x

+
∂3u
∂x3

= 0, 0 < α ≤ 1, t > 0 21 25

Solution

Using the transformation Eqs. (21.2) and (21.3) in Eq. (21.25), it reduces to

− cu − 6ku2 u + k3u = 0, 21 26

where prime denotes the differentiation with respect to ξ. Integrating Eq. (21.26) with respect to ξ and substituting the inte-
gration constant to zero, it gives

− cu− 2ku3 + k3u = 0 21 27

Using Eq. (21.8), we have

u3 ξ = λ3 sin 3β μξ , 21 28

and

u ξ = − μ2β2λ sin β μξ + μ2λβ β− 1 sin β− 2 μξ 21 29

Substituting Eqs. (21.13), (21.28) and (21.29) into Eq. (21.26), we have

k3λμ2β β− 1 sin β− 2 μξ + − k3λμ2β2 − cλ sin β μξ − 2kλ3 sin 3β μξ = 0 21 30

Wemay obtain the following system of algebraic equations by equating the exponents and coefficients of each pair of sine
functions

β− 1 0,

β− 2− 3β = 0,

− 2kλ3 − k3λμ2β β− 1 = 0,

− cλ− k3λμ2β2 = 0

21 31

Solving Eq. (21.31), it gives

β = − 1,

μ =
− c

k3
,

λ = ±
c
k

21 32

Similarly, using cosine function Eq. (21.9), we have

u ξ = λ cos β μξ , 21 33

u3 ξ = λ3 cos 3β μξ , 21 34

and

u ξ = − μ2β2λ cos β μξ + μ2λβ β− 1 cos β− 2 μξ 21 35
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Plugging Eqs. (21.19)–(21.21) into Eq. (21.12), we have

k3λμ2β β− 1 cos β− 2 μξ + − k3λμ2β2 − cλ cos β μξ − 2kλ3 cos 3β μξ = 0 21 36

We derive the same system of algebraic equations Eq. (21.31) and solution Eq. (21.32) by equating the exponents and
coefficients of each pair of cosine functions.
So, in terms of sine and cosine functions, Eq. (21.25) may be represented as follows:

u x, t =
±

c
k
csc

− c

k3
kx− c

tα

Γ 1 + α
, kx− c

tα

Γ 1 + α
≤

π

μ
,

0, otherwise,

21 37

and

u x, t =
±

c
k
sec

− c

k3
kx− c

tα

Γ 1 + α
, kx− c

tα

Γ 1 + α
≤

π

2μ
,

0, otherwise

21 38

All the above Eqs. (21.23), (21.24), (21.37), and (21.38) are the exact solutions of the nonlinear time-fractional KdV and
mKdV equations, respectively. Putting the suitable values of the constants in these equations, we may obtain the traveling
wave solutions of the given models.
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22

Tanh Method

22.1 Introduction

Nonlinear phenomena have an essential role in various scientific fields. Exact solutions of these nonlinear phenomena are
obtained using several approaches, including the tanh method, the inverse scattering method, Hirota’s bilinear methodol-
ogy, and the truncated Painleve expansion. Among them, the tanh method (Malfliet 1992; Malfliet 1996a; Malfliet 1996b;
Wazwaz 2004; Wazwaz 2005; Wazwaz 2008) is a robust method for finding the exact traveling wave solutions. Huibin and
Kelin (1990) proposed a power series in tanh as a solution and directly substituted this expansion into a higher order KdV
equation. The coefficients of the power series were obtained from the resulting algebraic equations. The tanh method is one
of the most straightforward technique for getting exact solutions to nonlinear diffusion equations (Khater et al. 2002). Var-
ious forms of the tanh method have been developed, and then a power series in tanh was utilized as an ansatz to get ana-
lytical solutions of certain nonlinear evolution equations (Malfliet 1996a).
In order to reduce the complexity of the tanhmethod,Malfliet (1992) modified the tanh approach by introducing tanh as a

new variable. After that, a straightforward analysis was performed to ensure that the approach might be applicable to a wide
range of equations (Khater et al. 2002). Later, in (Malfliet 1992; Malfliet 1996a; Malfliet 1996b), this approach was improved
by adding the boundary conditions into the series expansion. Fan andHon (2002) developed a generalized tanh approach for
getting multiple traveling wave solutions, in which the Riccati equation solution is used to replace the hyperbolic tan func-
tion in the tanh method. Pandir and Yildirim (2018) applied the generalized tanh method to obtain the exact traveling wave
solution of the space-time fractional foam drainage equation, the nonlinear time-space fractional Korteweg–de Vries equa-
tion, and time-fractional reaction-diffusion equation.

22.2 Description of the Tanh Method

This section summarises the major steps of this approach for solving fractional partial differential equations.
In order to understand the Tanh method (Malfliet 1992, 1996a, 1996b; Wazwaz 2004, 2005, 2008), we consider the fol-

lowing nonlinear fractional partial differential equation in two independent variables x and t of the type

Q u, ux , uxx , uxxx…, Dα
t u, … = 0, 0 < α ≤ 1, 22 1

where u = u(x, t) is an unknown function, and Q is a polynomial of u and its partial fractional derivatives, in which the
highest order derivatives and the nonlinear terms are involved.
Step 1. First, the traveling wave variable is considered as (Li and He 2010)

u x, t = u ξ , 22 2

ξ = kx−
ctα

Γ 1 + α
, 22 3

where c and k are nonzero constants which are to be determined later.
Step 2. From Eqs. (22.2) and (22.3), we obtain the following results:

∂αu
∂tα

= − c
du
dξ

,
∂u
∂x

= k
du
dξ

,
∂2u
∂x2

= k2
d2u

dξ2
,

∂3u
∂x3

= k3
d3u

dξ3
, 22 4
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and so on for other derivatives. Using Eq. (22.4), Eq. (22.1) can be rewritten in the following nonlinear ordinary differential
equation (ODE) form

P u, ku , k2u , k3u …, − cu , … = 0, 22 5

where P is a polynomial of u(ξ) and its various derivatives. The prime (‘) denotes the derivative with respect to ξ.
Step 3. Equation (22.5) is integrated as long as all terms contain derivatives. This procedure comes to an end when one of

the terms includes no derivatives. The associated integration constants are taken to be zero.
Step 4. Now, we introduce a new independent variable (Pandir and Yildirim 2018)

Y = tanh μξ 22 6

The corresponding derivatives are then derived as follows:

du
dξ

=
dY
dξ

du
dY

= μ sec h2 μξ
du
dY

= μ 1− tanh 2 μξ
du
dY

= μ 1−Y 2 du
dY

, 22 7

d2u

dξ2
=

d
dξ

du
dξ

=
d
dξ

μ 1−Y 2 du
dY

=
d
dY

μ 1−Y 2 du
dY

dY
dξ

= μ2 1−Y 2 2 d2u

dY 2 − 2μ2Y 1−Y 2 du
dY

,

22 8

d3

dξ3
= 2μ3 1−Y 2 3Y 2 − 1

du
dY

− 6μ3Y 1−Y 2 2 d2u

dY 2 + μ3 1−Y 2 3 d3u

dY 3 , 22 9

and so on, where μ is a parameter that is to be determined.
Step 5. We assume the tanh method for the solution of Eq. (22.5) in the following finite series expansion form (Malfliet

1992, 1996a, 1996b; Wazwaz 2004, 2005, 2008)

u ξ = S Y =
M

i = 0

aiY
i 22 10

The value ofMmay be calculated by balancing the highest order derivatives with the nonlinear terms arising in Eq. (22.5).
More precisely, we define the degree of u(ξ) as deg[u(ξ)] =M, which leads to the degrees of the other expressions as follows
(Gepreel and Omran 2012)

deg
dpu
dξp

= M + p,

deg us
dpu
dξp

q

= Ms + q p + M

22 11

Accordingly, we can obtain the value of M in Eq. (22.10).
Step 6. Substituting Eqs. (22.7)–(22.9) into Eq. (22.5), using Eq. (22.10), and collecting the coefficients of like powers of

Yi, (i = 0, 1, 2, …), Eq. (22.5) is converted into another polynomial in Y. Then equating each coefficient of the resulting
polynomial to zero, we obtain a set of algebraic equations for μ, k, c, and ai(i = 0, 1, …, M). Solving the algebraic equations
system and substituting the values of these constants μ, k, c, and ai(i = 0, 1, …,M) into Eq. (22.10), we can have a variety of
exact solutions of Eq. (22.1).
Remark: It is not always possible to obtain the value of M as a positive integer. In some cases, the values of M can be

obtained as negative numbers too. So, in order to avoid the singularity for Y 0, (−1≤ Y≤ 1), the series expansion
Eq. (22.10) may be modified as follows:

u ξ = S Y =
M

i = 0

aiY
i

− 1

, M = −M > 0 22 12
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22.3 Numerical Examples

We apply the present method to solve the nonlinear time-fractional KdV equation in Example 22.1 and the mKdV equation
in Example 22.2.

Example 22.1 Consider the following nonlinear time-fractional KdV equation (Wazwaz 2009)

∂αu
∂tα

+ 6u
∂u
∂x

+
∂3u
∂x3

= 0, 0 < α ≤ 1, t > 0 22 13

Solution

Using the transformation u x, t = u ξ , ξ = kx −
ctα

Γ 1 + α
in Eq. (22.13), it reduces to

− cu + 6ku u + k3u = 0, 22 14

where prime denotes the differentiation with respect to ξ. Integrating Eq. (22.14) with respect to ξ and substituting the inte-
gration constant to zero, it gives

− cu + 3ku2 + k3u = 0 22 15

The highest order linear and nonlinear terms in Eq. (22.15) are u and u2. So balancing the order of u and u2 by using the
concept given in Eq. (22.11), we get

deg u = deg u2 ,

M + 2 = 2M M = 2
22 16

Now, we assume the solution of Eq. (22.15) as Eq. (22.10) at M = 2. This may be written as

u ξ = S Y = a0 + a1 Y + a2 Y
2, 22 17

where a0, a1, and a2 are constants to be calculated. Substituting Eqs. (22.7) and (22.8) into Eq. (22.15), we have

− cu + 3ku2 + k3 μ2 1−Y 2 2 d2u

dY 2 − 2μ2Y 1−Y 2 du
dY

= 0 22 18

From Eq. (22.17), we have

u ξ = S Y = a1 + 2a2Y ,

u ξ = S Y = 2a2
22 19

Substituting Eqs. (22.17) and (22.19) into Eq. (22.18) yields a polynomial in Y with the parameters μ, k, c, a0, a1, and a2 as
follows:

− c a0 + a1 Y + a2 Y
2 + 3k a0 + a1 Y + a2 Y

2 2
+ k3

μ2 1−Y 2 2 2a2 − 2μ2Y

1−Y 2 a1 Y + 2a2 Y
= 0 22 20

Now, collecting the coefficients of Yi, i = 0, 1, 2, … and setting these to zero, we obtain the following system:

Y 4 6k3μ2a2 + 3ka22,

Y 3 2k3μ2a1 + 6ka1a2,

Y 2 − 8k3μ2a2 + 6ka0a2 + 3ka21 − ca2,

Y 1 − 2k3μ2a2c + 6ka0a1c− c2a1,

Y 0 2k3μ2a2 + 3ka20 − ca0

22 21

It may be noted that the point of intersection of the two lines is the solution when solving a system of linear equations. In
the case of a nonlinear system of equations, however, the diagrams might be circles, parabolas, or hyperbolas with many
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points of intersection, resulting in multiple solutions. By solving the above nonlinear system, it gives different values of c, k,
μ, a0, a1, a2 in various cases. Some of them are provided here.
Case 1:

a0 =
2
3
μ2k2, a1 = 0, a2 = − 2μ2k2, c = − 4μ2k3, μ = μ, k = k, 22 22

where μ and k are free parameters. Substituting the values of constants given in Eq. (22.22) into Eq. (22.17), we obtain

u x, t =
2
3
μ2k2 − 2μ2k2 tanh 2 μ kx + 4μ2k3

tα

Γ 1 + α
22 23

Case 2:

a0 = 2μ2k2, a1 = 0, a2 = − 2μ2k2, c = 4μ2k3, μ = μ, k = k, 22 24

where μ and k are free parameters. Using the values of constants from Eq. (22.24), Eq. (22.17) is written as

u x, t = 2μ2k2 − 2μ2k2 tanh 2 μ kx− 4μ2k3
tα

Γ 1 + α
22 25

All the above Eqs. (22.23) and (22.25) are the exact solutions of the nonlinear time-fractional KdV equation for case 1 and
case 2. Putting the suitable values of μ and k in Eqs. (22.23) and (22.25), we obtain the solutions of the given model.

Example 22.2 Let us consider the following nonlinear time-fractional mKdV equation (Wazwaz 2009)

∂αu
∂tα

− 6u2
∂u
∂x

+
∂3u
∂x3

= 0, 0 < α ≤ 1, t > 0 22 26

Solution

Using the transformation Eqs. (22.2) and (22.3) in Eq. (22.26), it reduces to

− cu − 6ku2 u + k3u = 0 22 27

Integrating Eq. (22.27) with respect to ξ and substituting the integration constant to zero, it gives

− cu− 2ku3 + k3u = 0 22 28

The highest order linear and nonlinear terms in Eq. (22.28) are u and u3. So balancing the order of u and u3 by using the
concept in Eq. (22.11), we get

deg u = deg u3 ,

M + 2 = 3M M = 1
22 29

By assuming the solution of Eq. (22.28) as Eq. (22.10) at M = 1, we have

u ξ = S Y = a0 + a1 Y , 22 30

where a0 and a1 are constants. Plugging Eqs. (22.7) and (22.8) into Eq. (22.28), we have

− cu− 2ku3 + k3 μ2 1−Y 2 2 d2u

dY 2 − 2μ2Y 1−Y 2 du
dY

= 0 22 31

From Eq. (22.30), we have

u ξ = S Y = a1,

u ξ = S Y = 0
22 32

Substituting Eqs. (22.30) and (22.32) into Eq. (22.31), we get

− c a0 + a1 Y − 2k a0 + a1 Y
3 + k3 − 2μ2Ya1 1−Y 2 = 0 22 33
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Now, collecting the coefficients of equal power of Y and setting these to zero, we obtain the following system

Y 3 2k3μ2a1 − 2ka31,

Y 2 − 6ka0a21,

Y 1 − 2k3μ2a1c− 6ka20a1c− c2a1,

Y 0 − 2ka30 − ca0

22 34

Solving the above nonlinear system gives various cases, as mentioned in the previous example, and a few of those are
included here.
Case 1:

a0 = 0, a1 = μ k, c = − 2μ2k3, μ = μ, k = k, 22 35

where μ and k are free parameters. By substituting the constant values from Eq. (22.35) into Eq. (22.30), we get

u x, t = μ k tanh μ kx + 2μ2k3
tα

Γ 1 + α
22 36

Case 2:

a0 = 0, a1 = − μ k, c = − 2μ2k3, μ = μ, k = k, 22 37

where μ and k are free parameters. Using the values of constants from Eq. (22.37), Eq. (22.30) is written as

u x, t = − μ k tanh μ kx + 2μ2k3
tα

Γ 1 + α
22 38

Eqs. (22.23), (22.25), (22.36), and (22.38) are the exact solutions to the nonlinear time-fractional KdV and mKdV equations.
We may find the solutions of the given models by substituting appropriate constant values into these equations.
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23

Fractional Subequation Method

23.1 Introduction

Based on the results obtained by (Zhang et al. 2010), Zhang and Zhang (2011) recently developed a novel algebraic approach
called the fractional subequation method for determining the traveling wave solutions to nonlinear fractional partial dif-
ferential equations (FPDEs). The homogeneous balancing principle (Wang 1999) and Jumarie’s modified Riemann-
Liouville derivative of fractional order (Jumarie 2006) is used in this technique. Zhang et al. Zhang and Zhang 2011) used
this technique to derive traveling wave solutions for the nonlinear time fractional biological population model and the (4 +
1)-dimensional space–time fractional Fokas equation. The traveling wave solutions of the space–time fractional mBBM
equation and the ZKBBM equation (Alzaidy 2013a) were obtained using this approach. The space–time fractional Potential
Kadomtsev–Petviashvili (PKP) equation and the space–time fractional symmetric regularized long wave (SRLW) equation
have both been solved using the subequation approach (Alzaidy 2013b). This approach was utilized by (Yépez-Martínez
et al. 2014) to establish analytical solutions for the space–time fractional coupled Hirota-Satsuma Korteweg de Vries
(KdV) and modified Korteweg de Vries (mKdV) equations. The fractional subequation method employing Jumarie’s mod-
ified Riemann-Liouville derivative was used by (Mohyud-Dina et al. 2017) to produce analytical solutions of the space–time
fractional Calogero-Degasperis (CD) and potential Kadomtsev-Petviashvili (PKP) equations. Yépez-Martínez and Gómez-
Aguilar (2019) examined the space–time fractional Hirota–Satsuma-coupled KdV and mKdV equations using the fractional
subequation approach described in Atangana’s conformable derivative sense. Bekir et al. (2014) used this approach to obtain
exact traveling wave solutions to the space–time fractional fifth-order Sawada-Kotera and (2 + 1)-dimensional dispersive
long-wave equations.

23.2 Implementation of the Fractional Subequation Method

Now, we will discuss the fractional subequation method (Zhang and Zhang 2011; Alzaidy 2013a, 2013b; Mohyud-Dina et al.
2017; Yépez-Martínez and Gómez-Aguilar 2019) for obtaining the solution of the nonlinear fractional differential equation.
In order to understand this method, we consider the following nonlinear fractional partial differential equation in two inde-
pendent variables x and t of the type

Q u, ux , ut , Dα
xu, D

α
t u, … = 0, 0 < α ≤ 1, 23 1

where Dα
xuand D

α
t uare Jumarie’s modified Reimann–Liouville derivatives of u, u= u(x, t) is an unknown function, andQ is

a polynomial of u and its partial derivatives, in which the highest order derivatives and the nonlinear terms are involved.
The main steps of this method are given as follows:
Step 1. First, we consider the traveling wave transformation as (Zhang and Zhang 2011; Bekir et al. 2014; Yépez-Martínez

et al. 2014; Mohyud-Dina et al. 2017; Yépez-Martínez and Gómez-Aguilar 2019)

u x, t = u ξ , ξ = kx + ct, 23 2

where c and k are nonzero constants to be determined later.
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Step 2. Using the chain rule concept (Guner et al. 2015) and Eq. (23.2), we obtain the following results:

∂αu
∂tα

=
∂αu
∂ξα

∂αξ

∂tα
= cα

dαu
dξα

= cαDα
ξu,

∂αu
∂xα

=
∂αu
∂ξα

∂αξ

∂xα
= kα

dαu
dξα

= kαDα
ξu,

23 3

and so on for other derivatives. Using Eqs. (23.2) and (23.3), Eq. (23.1) is converted into the following nonlinear fractional
ordinary differential equation (ODE) for u = u(ξ)

P u, ku , cu , kαDα
ξu, c

αDα
ξu, … = 0, 23 4

where P is a polynomial of u(ξ) and its various derivatives. The prime (‘) denotes the derivative with respect to ξ.
Step 3.According to the fractional subequation method, we suppose that the solution of Eq. (23.4) can be expressed in the

following finite series expansion form (Zhang and Zhang 2011; Alzaidy 2013a; Yépez-Martínez et al. 2014; Mohyud-Dina
et al. 2017; Yépez-Martínez and Gómez-Aguilar 2019)

u ξ =
M

i = 0

ai φ ξ i, 23 5

where ai(i= 0, 1, 2,…,M) are the constants to be determined later and φ(ξ) satisfies the following fractional Riccati equation
(Yépez-Martínez et al. 2014; Mohyud-Dina et al. 2017; Yépez-Martínez and Gómez-Aguilar 2019)

Dα
ξφ ξ = σ + φ2 ξ , 23 6

where σ is a constant.
Step 4. The value ofM in Eq. (23.5) may be determined by balancing the highest order derivatives and the nonlinear terms

in Eq. (23.1) or (23.4). Let us assume that the degree of u(ξ) as deg[u(ξ)] =M, which leads to the degrees of the other expres-
sions as follows (Bekir et al. 2014):

deg
dpu
dξp

= M + p,

deg us
dpu
dξp

q

= Ms + q p + M

23 7

So, using the concept of Eq. (23.7), one can find the value of M in Eq. (23.5).
Step 5. By employing the generalized Exp-function approach viaMittag–Leffler functions, Zhang et al. (2010) first derived

the following solutions of the fractional Riccati equation Eq. (23.6)

φ ξ =

− − σ tanh α − σξ , σ < 0,

− − σ cothα − σξ , σ < 0,

σ tan α σξ , σ > 0,

− σ cot α σξ , σ > 0,

−
Γ 1 + α

ξα + ω
, ω = constant, σ = 0,

23 8

where the generalized hyperbolic and trigonometric functions are defined as

sinh α x =
Eα xα −Eα − xα

2
, cosh α x =

Eα xα + Eα − xα

2
, tanh α x =

sinh α x
cosh α x

,

cothα x =
cosh α x
sinh α x

, sin α x =
Eα ixα −Eα − ixα

2i
, cos α x =

Eα ixα + Eα − ixα

2
,

tan α x =
sin α x
cos α x

, cot α x =
cos α x
sin α x

,
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where Eα(z) denotes the Mittag–Leffler function, which is given as

Eα z =
∞

i = 0

zi

Γ 1 + iα

Step 6. Substituting Eq. (23.5) along with Eq. (23.6) into Eq. (23.4) and using the properties of Jumarie’s modified
Reimann–Liouville derivative (Jumarie 2006), we can get a polynomial in φ(ξ). Setting all the coefficients of φi (i = 0, 1,
2, …,) to zero yields a set of nonlinear algebraic equations in ai(i = 0, 1, 2, …, M), k, c and σ.
Step 7. By solving the nonlinear algebraic equations obtained in step 6, we get the values of the constants. Substituting

these constants and the solution of Eq. (23.6) into Eq. (23.5), we can obtain the explicit solutions of Eq. (23.1).
Remark: If α 1, the Riccati equation becomes φ (ξ) = σ + φ2(ξ). As a result, the present method can solve the integer-

order differential equation. It is worth mentioning that the tanh-function method, which has been discussed in the previous
chapter, is a special case of this method.

23.3 Numerical Examples

This section uses the fractional subequationmethod to solve two nonlinear fractional PDEs: space–time fractional nonlinear
KdV equation in Example 23.1 and space–time fractional nonlinear mKdV equation in Example 23.2.

Example 23.1 We first consider the space–time fractional nonlinear KdV equation (Wazwaz 2009) in the form

∂αu
∂tα

+ 6u
∂αu
∂xα

+
∂3αu
∂x3α

= 0, 0 < α ≤ 1, t > 0 23 9

Solution

By using the transformation Eqs. (23.2) and (23.3), Eq. (23.9) is reduced to the following fractional-order ODE

cαDα
ξu + 6u kαDα

ξu + k3αD3α
ξ u = 0 23 10

Considering the homogenous balance between the highest order linear termD3α
ξ uand nonlinear term u Dα

ξu in Eq. (23.10)

and using the concept of Eq. (23.7), we get

M + 3 = M + M + 1 M = 2 23 11

Now, we assume Eq. (23.5) as the solution of Eq. (23.10) at M = 2. This may be written as

u ξ = a0 + a1φ ξ + a2 φ
2 ξ , 23 12

where a0, a1, and a2 are constants to be calculated and φ(ξ) satisfies Eq. (23.6). Now, by using Eq. (23.12) along with
Eq. (23.6) and using the properties of Jumarie’s modified Reimann–Liouville derivative (Jumarie 2006), we have

Dα
ξu ξ = a1σ + a1φ

2 ξ + 2a2φ ξ σ + 2 a2φ
3 ξ , 23 13

and

D3α
ξ u ξ = 2a1σ2 + 8a1σφ2 ξ + 6a1φ4 ξ + 16a2φ ξ σ2 + 40 a2φ3 ξ σ + 24 a2φ5 ξ 23 14

Substituting Eqs. (23.12)–(23.14) into Eq. (23.10) gives a polynomial in φn(ξ), n= 0, 1, 2, 3, 4, 5. with the parameters k, c, σ,
a0, a1, and a2 as follows:

cαa1σ + cαa1φ
2 ξ + 2cαa2φ ξ σ + 2cαa2φ3 ξ + 6 kα a0 + a1φ ξ + a2 φ

2 ξ

a1σ + a1φ
2 ξ + 2a2φ ξ σ + 2 a2φ3 ξ + 2k3αa1σ2 + 8k3αa1σφ2 ξ +

6k3αa1φ
4 ξ + 16k3αa2 φ ξ σ2 + 40 k3αa2φ

3 ξ σ + 24 k3αa2φ
5 ξ = 0

23 15

Now, collecting the coefficients of φn(ξ), n = 0, 1, 2, 3, 4, 5 and setting these to zero, we obtain the following nonlinear
system of equations
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φ5 ξ 12kαa22 + 24k3αa2,

φ4 ξ 18kαa1a2 + 6k3αa1,

φ3 ξ 2cαa2 + 12kαa0a2 + 6kαa21 + 12kαa22σ + 40k3αa2σ,

φ2 ξ cαa1 + 6kαa0a1 + 18kαa1a2σ + 8k3αa1σ,

φ1 ξ 2cαa2σ + 12kαa0a2σ + 6kαa21σ + 16kαa2σ2,

φ0 ξ cαa1σ + 6kαa0a1σ + 2k3αa1σ
2

23 16

Solving the above nonlinear system, we obtain the values of a0, a1, and a2 as follows:

a0 = −
1
6
8k3ασ + cα

kα
, a1 = 0, a2 = − 2k2α 23 17

As a result, Eqs. (23.8), (23.12), and (23.17) provide three types of exact solutions to Eq. (23.9), namely, two generalized
hyperbolic function solutions, two generalized trigonometric function solutions, and one rational solution as follows:

u1 x, t = −
1
6
8k3ασ + cα

kα
+ 2k2ασ tanh 2

α − σξ , σ < 0, 23 18

u2 x, t = −
1
6
8k3ασ + cα

kα
+ 2k2ασcoth2

α − σξ , σ < 0, 23 19

u3 x, t = −
1
6
8k3ασ + cα

kα
− 2k2ασ tan 2

α σξ , σ > 0, 23 20

u4 x, t = −
1
6
8k3ασ + cα

kα
− 2k2ασ cot 2α σξ , σ > 0, 23 21

u5 x, t = −
1
6
8k3ασ + cα

kα
− 2k2α

Γ2 1 + α

ξα + ω 2 , ω = constant, σ = 0, 23 22

where ξ = kx+ ct and k, c are arbitrary constants.

Example 23.2 We next consider the following nonlinear space–time fractional mKdV equation (Wazwaz 2009)

∂αu
∂tα

− 6u2
∂αu
∂xα

+
∂3αu
∂x3α

= 0, 0 < α ≤ 1, t > 0 23 23

Solution

Using the transformation Eqs. (23.2) and (23.3) in Eq. (23.23), it reduces to

cαDα
ξu− 6u2 kαDα

ξu + k3αD3α
ξ u = 0 23 24

By balancing the highest order linear term D3α
ξ u and nonlinear term u2 Dα

ξu in Eq. (23.24), we obtain

M + 3 = 2M + M + 1 M = 1 23 25

So, the solution of Eq. (23.24) at M = 1 may be written as

u ξ = a0 + a1φ ξ , 23 26

where a0 and a1 are constants and and φ(ξ) satisfies Eq. (23.6). By using the properties of modified Reimann–Liouville deriv-
ative (Jumarie 2006), Eqs. (23.6) and (23.26), we have

Dα
ξu ξ = a1σ + a1φ

2 ξ , 23 27

and

D3α
ξ u ξ = 2a1σ2 + 8a1σφ2 ξ + 6a1φ4 ξ 23 28
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Plugging Eqs. (23.26)–(23.28) into Eq. (23.24), it gives a polynomial in φn(ξ), n = 0, 1, 2, 3, 4 as follows:

cαa1σ + cαa1φ
2 ξ − 6 kα a0 + a1φ ξ 2 a1σ + a1φ

2 ξ + 2a1σ2 + 8a1σφ2 ξ

+ 6a1φ
4 ξ = 0

23 29

Equating the coefficients of equal power of φn(ξ), n = 0, 1, 2, 3, 4 to zero, the following nonlinear system of equations is
obtained

φ4 ξ − 6kαa31 + 6k3αa1,

φ3 ξ − 12kαa0a21,

φ2 ξ cαa1 − 6kαa20a1 − 6kαa31σ + 8k3αa1σ,

φ1 ξ − 12kαa0a
2
1σ,

φ0 ξ cαa1σ− 6kαa20a1σ + 2k3αa1σ2

23 30

Solving Eq. (23.30), we obtain the values of a0 and a1 in two different cases as follows:
Case 1:

a0 = 0, a1 = kα, σ = −
1
2

cα

k3α
23 31

Substituting Eq. (23.31) into Eq. (23.26) and using Eqs (23.8), we achieve three types of exact solutions to Eq. (23.23) as
given below

u1,1 x, t = − kα
1
2

cα

k3α
tanh α

1
2

cα

k3α
kx + ct , cα > 0, k3α > 0, 23 32

u1,2 x, t = − kα
1
2

cα

k3α
cothα

1
2

cα

k3α
kx + ct , cα > 0, k3α > 0, 23 33

u1,3 x, t = kα −
1
2

cα

k3α
tan α −

1
2

cα

k3α
kx + ct , cα < 0, k3α > 0, 23 34

u1,4 x, t = − kα −
1
2

cα

k3α
cot α −

1
2

cα

k3α
kx + ct , cα < 0, k3α > 0, 23 35

u1,5 x, t = − kα
Γ 1 + α

kx + ct α + ω
, cα = 0, ω = constant 23 36

Case 2:

a0 = 0, a1 = − kα, σ = −
1
2

cα

k3α
23 37

By substituting Eq. (23.37) into Eq. (23.26) and utilizing Eqs (23.8), we get the exact solutions to Eq. (23.23) as follows:

u2,1 x, t = kα
1
2

cα

k3α
tanh α

1
2

cα

k3α
kx + ct , cα > 0, k3α > 0, 23 38

u2,2 x, t = kα
1
2

cα

k3α
cothα

1
2

cα

k3α
kx + ct , cα > 0, k3α > 0, 23 39

u2,3 x, t = − kα −
1
2

cα

k3α
tan α −

1
2

cα

k3α
kx + ct , cα < 0, k3α > 0, 23 40

u2,4 x, t = kα −
1
2

cα

k3α
cot α −

1
2

cα

k3α
kx + ct , cα < 0, k3α > 0, 23 41
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u2,5 x, t = kα
Γ 1 + α

kx + ct α + ω
, cα = 0, ω = constant, 23 42

where k and c are arbitrary constants.
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24

Exp-Function Method

24.1 Introduction

He andWu (2006) were the first to suggest the exp-function method, which was effectively used to find solitary and periodic
solutions to nonlinear partial differential equations. Further, researchers have also utilized this strategy in their studies to
deal with different other equations like stochastic modified Korteweg de Vries (mKDV) equation (Dai and Zhang 2009a),
one-dimensional fractional wave equation, and fractional reaction-diffusion problem (Yildirim and Pinar 2010; Bekir et al.
2015), space–time fractional Fokas, and the nonlinear fractional Sharma-Tasso-Olver equations (Zheng 2013), fractional
Fitzhugh-Nagumo and KdV equations (Bekir et al. 2017), and so on (He and Abdou 2007; Wu and He 2007; Zhang
2007; Zhu 2008). This approach may be used to solve difference-differential equations (Zhu 2007a, 2007b) and equations
with variable coefficients (El-wakil et al. 2007; Zhang 2008). The method can also be used to create n-soliton solutions and
rational solutions (Dai and Zhang 2009a; Dai and Zhang 2009b). It converts fractional partial differential equations into
ordinary differential equations via fractional complex transform, simplifying the solution process. The exp-function
approach is simple and effective in obtaining generalized solitary and periodic solutions to nonlinear evolution equations.
The key advantage of this approach over others is that it produces more general solutions with certain free parameters.
Simplified exact solutions are generally obtained by using the exp-function approach. However, it is not always straight-
forward to get simplifications while considering complex expressions. Thus, this is the primary shortcoming of this method.

24.2 Procedure of the Exp-Function Method

This technique will be presented here for solving fractional partial differential equations. In order to understand the
exp-function method (He and Wu 2006; Dai and Zhang 2009a; Yildirim and Pinar 2010; Bekir et al. 2015), let us consider
the following nonlinear fractional partial differential equation of the type

Q u, Dα
t u, D

α
t D

α
t u, … = 0, 0 < α ≤ 1, 24 1

where u is an unknown function, andQ is a polynomial of u and its partial fractional derivatives, in which the highest order
derivatives and the nonlinear terms are involved.
The traveling wave variable is considered as (Bekir et al. 2015)

u x, t = U ξ , 24 2

ξ = kx−
ctα

Γ 1 + α
, 24 3

where c and k are nonzero constants.
Using Eqs. (24.2) and (24.3), Eq. (24.1) can be rewritten in the following nonlinear ODE form:

P U, U , U , U , … = 0, 24 4

where the prime denotes the derivative with respect to ξ.
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We suppose that the exp-function approach is based on the assumption that the wave solution of Eq. (24.4) may be
represented in the following form (Chakraverty et al. 2019)

U ξ =

d

n = − c
an exp nξ

q

n = − p
bn exp nξ

, 24 5

where c, d, p, and q are positive integers that are determined later, and an, bn are unknown constants. Now, Eq. (24.5) can be
rewritten in the following equivalent form:

U ξ =
a− c exp − cξ + + ad exp dξ
b− p exp − pξ + + bq exp qξ

24 6

This analogous formulation is essential for determining the analytic solution to the problems. The values of c and p are
obtained by balancing the exp-functions of the lowest order linear term with the lowest- order nonlinear term in Eq. (24.4).
Similarly, the values for d and q can be determined by balancing the exp-functions of the highest order linear term in
Eq. (24.4) with the highest order nonlinear term (He and Wu 2006; He and Abdou 2007).
We can then derive an equation in terms of exp (nξ) by putting Eq. (24.5) into Eq. (24.4) along with the previously deter-

mined values of c, d, p, and q. When all the coefficients of the different powers of exp (nξ) are set to zero, a series of algebraic
equations in terms of an, bn, k, and c are obtained. The values of an, bn, k, and c are determined by solving these algebraic
equations. Furthermore, the solution of Eq. (24.1) may be derived by incorporating these values into Eq. (24.5).
In the following sections, we present two examples to demonstrate the usefulness of the exp-function technique to solving

nonlinear fractional differential equations.

24.3 Numerical Examples

Here, we apply the present method to solve a time-fractional nonlinear advection equation in Example 24.1 and nonlinear
time-fractional fisher’s equation in Example 24.2.

Example 24.1 Consider the following nonlinear time-fractional advection equation (Wazwaz 2007)

∂αu
∂tα

+ u
∂u
∂x

= 0, 0 < α ≤ 1 24 7

Solution

Using the transformation u(x, t) = U(ξ), ξ = kx−
ctα

Γ 1 + α
in Eq. (24.7), it reduces to

− cU + kUU = 0, 24 8

where prime denotes the differentiation with respect to ξ. Let us assume that the ordinary differential equation Eq. (24.8) has
a solution similar to Eq (24.6). As a result, we may suppose that the solution is as follows:

U ξ =
a− c exp − cξ + + ad exp dξ
b− p exp − pξ + + bq exp qξ

24 9

The highest order linear and nonlinear terms in Eq. (24.8) are U and UU .
Differentiating and simplifying Eq. (24.9), we get

U =
c1 exp − p + c ξ + + d1 exp d + q ξ

c2 exp − 2pξ + + d2 exp 2qξ
, 24 10

and

UU =
c3 exp − p + 2c ξ + + d3 exp 2d + q ξ

c4 exp − 3pξ + + d4 exp 3qξ
24 11
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It is worth noting that after differentiation and simplification, we will obtain various terms containing different combina-
tions of a−c, ad, b−p, … etc., which for simplicity we have considered as c1, …d1, c2, …d2, c3, …d3 and c4, …d4.
The lowest order exp-function term of Eq. (24.10) is

c1 exp − p + c ξ +
c2 exp − 2pξ +

24 12

Multiplying and dividing by exp(−pξ), we get

c1 exp − 2p + c ξ +
c2 exp − 3pξ +

24 13

Similarly, the highest order exp-function term of Eq. (24.10) is

+ d1 exp d + q ξ

+ d2 exp 2qξ
24 14

Multiplying and dividing by exp(qξ), we obtain

+ d1 exp d + 2q ξ

+ d2 exp 3qξ
24 15

Balancing the lowest order exp-functions in Eqs. (24.13) and (24.11), we get

− 2p− c = − 2c− p

p = c

Balancing the highest order exp-functions in Eqs. (24.15) and (24.11), we get

d + 2q = 2d + q

q = d

For simplicity, we choose the values p = c = 1 and q = d = 1 (He and Wu 2006; Dai and Zhang 2009a; Yildirim and Pinar
2010; Zheng 2013; Bekir et al. 2015; Bekir et al. 2017). The trial solution Eq. (24.5) therefore takes the following form:

U ξ =
a− 1 exp − ξ + a0 + a1 exp ξ

b− 1 exp − ξ + b0 + b1 exp ξ
24 16

Here, a−1, a0, a1, b−1, b0, and b1 are the coefficients to be determined next.
Plugging Eq. (24.16) in Eq. (24.8), we have

1
A

R2 exp 2ξ + R1 exp ξ + R0 + R− 1 exp − ξ + R− 2 exp − 2ξ = 0, 24 17

where

A = b− 1 exp − ξ + b0 + b1 exp ξ 3,

R2 = a0b1 − a1b0 cb1 − ka1 ,

R1 = 2ka21b− 1 + − 2cb− 1 − 2ka− 1 b1 − cb20 + ka0b0 a1 + b1 2ca− 1b1 + ca0b0 − ka20 ,

R0 = 3 a− 1b1 − a1b− 1 cb0 − ka0 ,

R− 1 = − 2ka2− 1b1 + 2cb1 + 2ka1 b− 1 + cb20 − ka0b0 a− 1 − b− 1 2ca1b− 1 + ca0b0 − ka20 ,

R− 2 = a− 1b0 − a0b− 1 cb− 1 − ka− 1 ,

24 18

By equating the coefficients of exp(nξ) in Eq. (24.18) to zero, we get the following system of equations:

R2 = 0, R1 = 0, R0 = 0, R− 1 = 0, and R− 2 = 0 24 19

When we solve a system of linear equations, the solution of the system is the point of intersection of the two lines. But in
the case of systems of nonlinear equations, the graphs may be circles, parabolas, or hyperbolas, and there may be several
points of intersection, and so several solutions. By solving the above nonlinear system of algebraic Eq. (24.19), we may get
many cases of the solution, some of them are given as follows:
Case 1

a0 =
b0a− 1

b− 1
, b0 = b0, a1 =

b1a− 1

b− 1
, b1 = b1, a− 1 = a− 1, b− 1 = b− 1, c = c, k = k, 24 20
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where b0, b1, a−1, b−1, c, and k are free parameters. Substituting the above values into Eq. (24.16), we will obtain the fol-
lowing exact solution:

u1,2 x, t =
a− 1 exp − kx− ctα

Γ 1 + α + b0a− 1
b− 1

+ b1a− 1
b− 1

exp kx− ctα
Γ 1 + α

b− 1 exp − kx− ctα
Γ 1 + α + b0 + b1 exp kx − ctα

Γ 1 + α

24 21

Case 2

a0 = 0, b0 = 0, a1 = a1, b1 = b1, a− 1 = 0, b− 1 = 0, c = c, k = k, 24 22

where a1, b1, c, and k are free parameters. Substituting Eq. (24.22) into Eq. (24.16), we get the below exact solution

u3,4 x, t =
a1 exp kx− ctα

Γ 1 + α

b1 exp kx− ctα
Γ 1 + α

=
a1
b1

24 23

Case 3

a0 = a0, b0 = b0, a1 =
a0b1
b0

, b1 = b1, a− 1 = 0, b− 1 = 0, c = c, k = k, 24 24

where a0, b0, b1, c, and k are free parameters. Plugging Eq. (24.24) in Eq. (24.16), we get

u5,6 x, t =
a0 +

a0b1
b0

exp kx−
ctα

Γ 1 + α

b0 + b1 exp kx−
ctα

Γ 1 + α

24 25

All the above are the exact solutions of the time-fractional nonlinear advection equation.

Example 24.2 Let us consider the nonlinear time-fractional Fisher’s equation (Veeresha et al. 2019)

∂αu
∂tα

=
∂2u
∂x2

+ 6u 1−u , t > 0, x R, 0 < α ≤ 1 24 26

Solution

Equation (24.26) may be reduced to the ordinary differential equation in ξ by using the above-discussed transformation

u(x, t) = U(ξ), ξ = kx−
ctα

Γ 1 + α
as

k2U + cU + 6U − 6U2 = 0, 24 27

where prime denotes the differentiation with respect to ξ.
Next, we assume the solution of the ordinary differential equation Eq. (24.27) as Eq (24.6). This may be written as

U ξ =
a− c exp − cξ + + ad exp dξ
b− p exp − pξ + + bq exp qξ

24 28

The highest order linear and nonlinear terms in Eq. (24.27) are U and U2. Differentiating and simplifying Eq. (24.28),
we get

U =
c1 exp − 3p + c ξ + + d1 exp d + 3q ξ

c2 exp − 4pξ + + d2 exp 4qξ
, 24 29

and

U2 =
c3 exp − 2cξ + + d3 exp 2dξ
c4 exp − 2pξ + + d4 exp 2qξ

24 30

Again as mentioned in Example 24.1, after differentiation and simplification, we will get various terms containing dif-
ferent combinations of a−c, ad, b−p, … etc., which for simplicity, we assumed as c1, …d1, c2, …d2, c3, …d3 and c4, …d4.
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The lowest order exp-function term of Eq. (24.30) is

c3 exp − 2cξ + …
c4 exp − 2pξ + … 24 31

Multiplying and dividing by exp(−2pξ), we get

c3 exp − 2c + 2p ξ +
c4 exp − 4pξ +

24 32

Similarly, the highest order exp-function term of Eq. (24.30) is

+ d3 exp 2dξ
+ d4 exp 2qξ

24 33

Multiplying and dividing by exp(2qξ), we obtain

+ d3 exp 2d + 2q ξ

+ d4 exp 4qξ
24 34

Next, we balance the lowest order exp-functions in Eqs. (24.29) and (24.32) to have a relation between p and c as below

− 3p− c = − 2c− 2p

p = c

Similarly, we balance the highest order exp-functions in Eqs. (24.29) and (24.34), and we get

d + 3q = 2d + 2q

q = d

Here, for simplicity, we consider p= c= 1 and q= d= 1 (He andWu 2006; Dai and Zhang 2009a; Yildirim and Pinar 2010;
Zheng 2013; Bekir et al. 2015; Bekir et al. 2017). Then, the trial solution Eq. (24.5) takes the following form:

U ξ =
a− 1 exp − ξ + a0 + a1 exp ξ

b− 1 exp − ξ + b0 + b1 exp ξ
24 35

Here, a−1, a0, a1, b−1, b0, and b1 are the coefficients as explained in Example 24.1, which are to be determined next.
Plugging Eq. (24.35) in Eq. (24.27) and simplifying, we have

1
A

R3 exp 3ξ + R2 exp 2ξ + R1 exp ξ + R0 + R− 1 exp − ξ

+ R− 2 exp − 2ξ + R− 3 exp − 3ξ
= 0, 24 36

where

A = b− 1 exp − ξ + b0 + b1 exp ξ 3,

R3 = − 6 a1 − b1 a1b1,

R2 = − a0 − k2 + c− 6 b21 + a1b1 − 12a0 + − k2 + c + 12 b0 − 6a21b0,

R1 = − 2a− 1 − 2k2 + c− 3 b21 +
− 12a− 1 + − 4k2 + 2c + 12 b− 1 a1 −

k2 + c− 12 b0 + 6a0 a0
b1 + ,

− 6b− 1a1 + b0 k2 + c + 6 b0 − 12a0 a1

R0 = 6a0b
2
0 − 6 2a− 1b1 + k2b1 + 2a1 − 2b1 b− 1 a0 +

− 12a− 1a1 − 3 − k2 + c− 4 a− 1b1

− 6a20 + 3 k2 + c + 4 a1b− 1

b0,

R− 1 = 2 2k2 + c + 3 a1b
2
− 1 + − 12a1 + − 4k2 − 2c + 12 b1 a− 1 + a0 − k2 + c + 3 b0 − 6a0 b− 1

− 6a− 1b1 + b0 − k2 + c− 6 b0 + 12a0 a− 1,

R− 2 = a0 k2 + c + 6 b2− 1 − 12a0 + k2 + c− 12 b0 a− 1b− 1 − 6a2− 1b0,

R− 3 = − 6 a− 1 − b− 1 a− 1b− 1

24 37

Equating the coefficients of exp(nξ) in Eq. (24.37) to zero, we have

R3 = 0, R2 = 0, R1 = 0, R0 = 0, R− 1 = 0, R− 2 = 0, and R− 3 = 0 24 38
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By solving the above nonlinear system of algebraic Eq. (24.38), we may obtain many cases of the solution. However, some
of them are as follows:
Case 1

a0 =
b0 ± b20 − 4b1b− 1

2
, b0 = b0, a1 = 0, b1 = b1, a− 1 = b− 1, b− 1 = b− 1, c = 6, k = 0, 24 39

where b0, b1, and b−1 are free parameters. Substituting the above values into Eq. (24.35), we will get the following exact
solution

u1,2 x, t =

b− 1 exp
6tα

Γ 1 + α
+

b0 ± b20 − 4b1b− 1

2

b− 1 exp
6tα

Γ 1 + α
+ b0 + b1 exp −

6tα

Γ 1 + α

24 40

Case 2

a0 =
b0 ± b20 − 4b1b− 1

2
, b0 = b0, a1 = b1, b1 = b1, a− 1 = 0, b− 1 = b− 1, c = − 6, k = 0, 24 41

where b0, b1, and b−1 are free parameters. Substituting Eq. (24.41) into Eq. (24.35), we get the below exact solution

u3,4 x, t =

b0 ± b20 − 4b1b− 1

2
+ b1 exp

6tα

Γ 1 + α

b− 1 exp −
6tα

Γ 1 + α
+ b0 + b1 exp

6tα

Γ 1 + α

24 42

Case 3

a0 = − 4 ± b1b− 1 , b0 = 2 ± b1b− 1 , a1 = b1, b1 = b1, a− 1 = b− 1, b− 1 = b− 1, c = 0, k = ± 6, 24 43

where b1, and b−1 are free parameters. Plugging Eq. (24.43) in Eq. (24.35), we get

u5,6 x, t =
b− 1 exp − ± 6x − 4 ± b1b− 1 + b1 exp ± 6x

b− 1 exp − ± 6x + 2 ± b1b− 1 + b1 exp ± 6x
24 44

Case 4

a0 = 2 ± b1b− 1 , b0 = 2 ± b1b− 1 , a1 = 0, b1 = b1, a− 1 = b− 1, b− 1 = b− 1, c = 5, k = i, 24 45

where b1, and b−1 are free parameters. Plugging Eq. (24.45) in Eq. (24.35), we have

u7,8 x, t =
b− 1 exp − ix−

5tα

Γ 1 + α
+ 2 ± b1b− 1

b− 1 exp − ix−
5tα

Γ 1 + α
+ 2 ± b1b− 1 + b1 exp ix−

5tα

Γ 1 + α

24 46

Case 5

a0 = 2 ± b1b− 1 , b0 = 2 ± b1b− 1 , a1 = b1, b1 = b1, a− 1 = 0, b− 1 = b− 1, c = − 5, k = i, 24 47

where b1, and b−1 are free parameters. Using Eq. (24.47) in Eq. (24.35), we get

u9,10 x, t =
2 ± b1b− 1 + b1 exp ix +

5tα

Γ 1 + α

b− 1 exp − ix +
5tα

Γ 1 + α
+ 2 ± b1b− 1 + b1 exp ix +

5tα

Γ 1 + α

24 48
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Case 6

a0 = 6 ± b1b− 1 , b0 = 2 ± b1b− 1 , a1 = 0, b1 = b1, a− 1 = 0, b− 1 = b− 1, c = 0, k = 6i, 24 49

where b1, and b−1 are free parameters. Plugging Eq. (24.49) in Eq. (24.35), we get

u11,12 x, t =
6 ± b1b− 1

b− 1 exp − 6ix + 2 ± b1b− 1 + b1 exp 6ix
24 50

Case 7

a0 = 0, b0 = 2 ± b1b− 1 , a1 = 0, b1 = b1, a− 1 = b− 1, b− 1 = b− 1, c = 5, k = − 1, 24 51

where b1, and b−1 are free parameters. Plugging Eq. (24.51) in Eq. (24.35), we get

u13,14 x, t =
b− 1 exp − − x−

5tα

Γ 1 + α

b− 1 exp − − x−
5tα

Γ 1 + α
+ 2 ± b1b− 1 + b1 exp − x−

5tα

Γ 1 + α

24 52

Case 8

a0 = 0, b0 = 2 ± b1b− 1 , a1 = 0, b1 = b1, a− 1 = b− 1, b− 1 = b− 1, c = 5, k = 1, 24 53

where b1, and b−1 are free parameters. Substituting Eq. (24.53) into Eq. (24.35), we obtain

u15,16 x, t =
b− 1 exp − x−

5tα

Γ 1 + α

b− 1 exp − x−
5tα

Γ 1 + α
+ 2 ± b1b− 1 + b1 exp x−

5tα

Γ 1 + α

24 54

Case 9

a0 = 0, b0 = 0, a1 = 0, b1 = b1, a− 1 = b− 1, b− 1 = b− 1, c = 3, k = 0, 24 55

where b1, and b−1 are free parameters. Plugging Eq. (24.55) in Eq. (24.35), we get

u17,18 x, t =
b− 1 exp − −

3tα

Γ 1 + α

b− 1 exp − −
3tα

Γ 1 + α
+ b1 exp −

3tα

Γ 1 + α

24 56

Case 10

a0 = 0, b0 = 2 ± b1b− 1 , a1 = b1, b1 = b1, a− 1 = 0, b− 1 = b− 1, c = − 5, k = − 1, 24 57

where b1, and b−1 are free parameters. Plugging Eq. (24.57) in Eq. (24.35), we get

u19,20 x, t =
b1 exp − x +

5tα

Γ 1 + α

b− 1 exp − − x +
5tα

Γ 1 + α
+ 2 ± b1b− 1 + b1 exp − x +

5tα

Γ 1 + α

24 58

Case 11

a0 = 0, b0 = 2 ± b1b− 1 , a1 = b1, b1 = b1, a− 1 = 0, b− 1 = b− 1, c = − 5, k = 1, 24 59

where b1, and b−1 are free parameters. Plugging Eq. (24.59) in Eq. (24.35), we get
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u21,22 x, t =
b1 exp x +

5tα

Γ 1 + α

b− 1 exp − x +
5tα

Γ 1 + α
+ 2 ± b1b− 1 + b1 exp x +

5tα

Γ 1 + α

24 60

Case 12

a0 = 0, b0 = 0, a1 = b1, b1 = b1, a− 1 = 0, b− 1 = b− 1, c = − 3, k = 0, 24 61

where b1, and b−1 are free parameters. Plugging Eq. (24.61) in Eq. (24.35), we get

u23,24 x, t =
b1 exp

3tα

Γ 1 + α

b− 1 exp −
3tα

Γ 1 + α
+ b1 exp

3tα

Γ 1 + α

24 62

All the above are the exact solutions of the nonlinear time-fractional Fisher’s equation.
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25

Exp(−φ(ξ))-Expansion Method

25.1 Introduction

The exp(−φ(ξ))-expansion method is used for finding solitary and periodic solutions to nonlinear partial differential equa-
tions. This method was utilized by Akbulut et al. (Akbulut et al. 2017) to obtain the solution of the Zakharov Kuznetsov–
Benjamin Bona Mahony (ZK-BBM) equation and ill-posed Boussinesq equation. Hafez (2016) implemented this method to
construct the new exact traveling wave solutions of the (3 + 1)-dimensional coupled Klein–Gordon–Zakharov equation aris-
ing in mathematical physics and engineering. With the help of the exp(−φ(ξ))-expansion method, Islam (2015) examined
traveling wave solutions of the Benney–Luke problem. Hafez and Akbar (2015) obtained new explicit and exact traveling
wave solutions of the (1 + 1)-dimensional nonlinear Klein–Gordon–Zakharov equation, which describes the interaction of
the Langmuir wave and the ion-acoustic wave in high-frequency plasma. The exact traveling wave solutions of the Zhiber–
Shabat equation have been studied by Hafez et al. (2014). Alam et al. (2015a) found the exact traveling wave solutions to the
(3 + 1)-dimensional modified Korteweg de Vries (mKdV)–ZK and the (2 + 1)-dimensional Burgers equations using this
approach. The solutions to the space–time fractional nonlinear Whitham–Broer–Kaup and generalized nonlinear Hir-
ota–Satsuma coupled Korteweg de Vries (KdV) equations were obtained using this technique by Moussa and Alhakim
(2020). Alam et al. (2015b) used this approach to solve the (2 + 1)-dimensional Boussinesq equation, which is an important
equation in mathematical physics. For the first time, Abdelrahman et al. (2015) addressed the wave solution of a nonlinear
dynamical system in a new double-chain model of DNA and a diffusive predator–prey system by utilizing the said method.
The following section describes the main steps of the exp(−φ(ξ))-expansion method for obtaining the solution of the non-

linear fractional partial differential equation.

25.2 Methodology of the Exp(−φ(ξ))-Expansion Method

Let us discuss the exp(−φ(ξ))-expansion method (Hafez et al. 2014; Abdelrahman et al. 2015; Hafez and Akbar 2015; Islam
2015; Alam et al. 2015a, 2015b; Hafez 2016; Akbulut et al. 2017; Moussa and Alhakim 2020) for obtaining the solution of the
nonlinear fractional differential equation. In order to understand exp(−φ(ξ))-expansion method, we assume the following
nonlinear fractional partial differential equation in two independent variables x and t of the type

Q u, ux , uxx , uxxx…, Dα
t u, … = 0, 0 < α ≤ 1, 25 1

where u = u(x, t) is an unknown function, and Q is a polynomial of u and its partial fractional derivatives, in which the
highest order derivatives and the nonlinear terms are involved.
The following are the main steps in this method.
Step 1. First, the traveling wave variable is considered as (Li and He 2010)

u x, t = u ξ , 25 2

ξ = kx−
ctα

Γ 1 + α
, 25 3

where c and k are nonzero constants that are to be determined later.
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Step 2. Using the chain rule concept (Guner et al. 2015) and Eqs. (25.2) and (25.3), we obtain the following results:

∂αu
∂tα

= − c
du
dξ

,
∂u
∂x

= k
du
dξ

,
∂2u
∂x2

= k2
d2u

dξ2
,

∂3u
∂x3

= k3
d3u

dξ3
, 25 4

and so on for other derivatives. Using Eq. (25.4), Eq. (25.1) is reduced to the following nonlinear ordinary differential equa-
tion (ODE) form

P u, ku , k2u , k3u …, − cu , … = 0, 25 5

where P is a polynomial of u(ξ) and its various derivatives. The prime ( ) denotes the derivative with respect to ξ.
Step 3. Equtaion (25.5) is integrated as long as all terms contain derivatives. This procedure is completed when one of the

terms has no derivative. The integration constants are assumed to be zero.
Step 4. According to the exp(−φ(ξ))-expansion method, we assume that the solution of Eq. (25.5) can be expressed in the

following finite series expansion form (Hafez et al. 2014; Abdelrahman et al. 2015; Hafez and Akbar 2015; Islam 2015; Alam
et al. 2015a, 2015b; Hafez 2016; Akbulut et al. 2017; Moussa and Alhakim 2020):

u ξ =
M

i = 0

ai exp −ϕ ξ i, 25 6

where ai(aM 0) are the constants to be determined later and ϕ(ξ) satisfies the following auxiliary ODE (Islam 2015; Hafez
2016; Akbulut et al. 2017)

ϕ ξ = exp −ϕ ξ + μ exp ϕ ξ + λ 25 7

Step 5. The value of M may be computed by balancing the highest order derivatives with the nonlinear terms arising in
Eq. (25.5). More precisely, we define the degree of u(ξ) as deg[u(ξ)] =M, which leads to the degrees of the other expressions
as follows (Gepreel and Omran 2012):

deg
dpu
dξp

= M + p,

deg us
dpu
dξp

q

= Ms + q p + M

25 8

Accordingly, we can obtain the value of M in Eq. (25.6).
Step 6. One may obtain the solution of auxiliary Eq. (25.7) as follows (Islam 2015; Hafez 2016; Akbulut et al. 2017):
Case 1: (Hyperbolic function solutions)
When λ2− 4μ> 0 and μ 0,

ϕ1 ξ = ln − λ2 − 4μ tanh λ2 − 4μ 2 ξ + C − 2λμ 25 9

Case 2: (Trigonometric function solutions)
When λ2− 4μ< 0 and μ 0,

ϕ2 ξ = ln
4μ− λ2 tan 4μ− λ2 2 ξ + C − λ

2μ
25 10

Case 3: (Hyperbolic function solutions)
When λ2− 4μ> 0, μ = 0, and λ 0,

ϕ3 ξ = − ln
λ

cosh λ ξ + c + sinh λ ξ + C − 1
25 11

Case 4: (Rational function solutions)
When λ2− 4μ = 0, μ 0, and λ 0,

ϕ4 ξ = ln −
2 λ ξ + C + 2

λ2 ξ + C
25 12
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Case 5
When λ2− 4μ = 0, μ = 0, and λ = 0,

ϕ5 ξ = ln ξ + C , 25 13

where C is an integration constant.
Step 7. Substituting Eq. (25.6) into Eq. (25.5) using Eq. (25.7) and collecting all terms with the same power of exp

(−ϕ(ξ))i(i = 0, 1, 2, …,) together, we get a polynomial in exp(−ϕ(ξ)). Equating each coefficient of this polynomial to zero
yields a set of algebraic equations for ai(i= 0, 1, 2, …M), k, c, λ, μ. Solving the algebraic equations system, we can construct a
variety of exact solutions for Eq. (25.1).

25.3 Numerical Examples

We employ the present method to solve the nonlinear time-fractional KdV equation in Example 25.1 and the mKdV equa-
tion in Example 25.2.

Example 25.1 Let us consider the following nonlinear time-fractional KdV equation (Wazwaz 2009)

∂αu
∂tα

+ 6u
∂u
∂x

+
∂3u
∂x3

= 0, 0 < α ≤ 1, t > 0 25 14

Solution

Using the transformation Eqs. (25.2) and (25.3), Eq. (25.14) reduces to

− cu + 6ku u + k3u = 0, 25 15

where prime denotes the differentiation with respect to ξ. Integrating Eq. (25.15) with respect to ξ and substituting the inte-
gration constant to zero, it gives

− cu + 3ku2 + k3u = 0 25 16

The highest order linear and nonlinear terms in Eq. (25.16) are u and u2. So balancing the order of u and u2 by using the
concept given in Eq. (25.8), we get

deg u = deg u2 ,

M + 2 = 2M M = 2
25 17

Now, we assume Eq. (25.6) as the solution of Eq. (25.16) at M = 2. This may be written as

u ξ = a0 + a1 exp −ϕ ξ + a2 exp − 2ϕ ξ 25 18

where a0, a1, and a2 are constants to be calculated. From Eq. (25.18), we have

u ξ = − a1 exp −ϕ ξ ϕ ξ − 2a2 exp − 2ϕ ξ ϕ ξ 25 19

Using Eq. (25.7), Eq. (25.19) can be written as

u ξ = − a1μ− 2a2μ + a1λ exp −ϕ ξ − a1 + 2a2λ exp − 2ϕ ξ − 2a2 exp − 3ϕ ξ 25 20

Similarly,

u ξ = a1λμ + 2a2μ
2 + 2a1μ + a1λ

2 + 6a2λμ exp −ϕ ξ + 3a1λ + 8a2μ + 4a2λ
2

exp − 2ϕ ξ + 2a1 + 10a2λ exp − 3ϕ ξ + 6a2 exp − 4ϕ ξ
25 21

Substituting Eqs. (25.18) and (25.21) into Eq. (25.16) yields a polynomial in exp (−nϕ(ξ)), n= 0, 1, 2,…with the parameters
λ, μ, k, c, a0, a1, and a2 as follows:

− c a0 + a1 exp −ϕ ξ + a2 exp − 2ϕ ξ + 3k a0 + a1 exp −ϕ ξ + a2 exp − 2ϕ ξ 2

+ k3
a1λμ + 2a2μ2 + 2a1μ + a1λ

2 + 6a2λμ exp −ϕ ξ + 3a1λ + 8a2μ + 4a2λ2

exp − 2ϕ ξ + 2a1 + 10a2λ exp − 3ϕ ξ + 6a2 exp − 4ϕ ξ
= 0

25 22
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Now, collecting the coefficients of exp (−nϕ(ξ)), n = 0, 1, 2, … and setting these to zero, we obtain the following system:

exp − 4ϕ ξ 6k3a2 + 3ka22,

exp − 3ϕ ξ 10k3λa2 + 2k3a1 + 6ka1a2,

exp − 2ϕ ξ 4k3λ2a2 + 3k3λa1 + 8k3μ a2 + 6ka0a2 + 3ka21 − ca2,

exp −ϕ ξ k3λ2a1 + 6k3λμ a2 + 2k3μ a1 + 6ka0a1 − ca1,

Constant k3λμa1 + 2k3μ2 a2 + 3ka20 − ca0

25 23

Solving the above nonlinear system, we obtain different values of c, k, a0, a1, a2 in various cases. Some of them are
listed below.
Case 1

a0 = −
1
3
k2 λ2 + 2μ , a1 = − 2k2λ, a2 = − 2k2, c = − k3 λ2 − 4μ , k = k, 25 24

where k is a free parameter.
(1.1) (Hyperbolic function solution): Substituting the values of constants given in Eq. (25.24) into Eq. (25.18) and using

Eq. (25.9), we obtain

u1,1 ξ = −
1
3
k2 λ2 + 2μ −

2k2λ

− λ2 − 4μ tanh λ2 − 4μ 2 ξ + C − 2λμ

−
2k2

− λ2 − 4μ tanh λ2 − 4μ 2 ξ + C − 2λμ
2

25 25

when λ2− 4μ> 0 and μ 0.
(1.2) (Trigonometric function solution): When λ2− 4μ< 0 and μ 0, we obtain

u1,2 ξ = −
1
3
k2 λ2 + 2μ −

4k2μλ

4μ− λ2 tan 4μ− λ2 2 ξ + C − λ

−
8μ2k2

4μ− λ2 tan 4μ− λ2 2 ξ + C − λ
2

25 26

(1.3) (Hyperbolic function solution): When λ2− 4μ> 0, μ = 0, and λ 0, we get

u1,3 ξ = −
1
3
k2 λ2 + 2μ −

2k2λ2

cosh λ ξ + c + sinh λ ξ + C − 1

−
2k2λ2

cosh λ ξ + c + sinh λ ξ + C − 1 2

25 27

(1.4) (Rational function solution): When λ2− 4μ = 0, μ 0, and λ 0, we have

u1,4 ξ = −
1
3
k2 λ2 + 2μ −

2k2λ3 ξ + C
− 2 λ ξ + C − 2

−
2k2λ4 ξ + C 2

2 λ ξ + C + 2 2 25 28

(1.5) When λ2− 4μ = 0, μ = 0, and λ = 0, we obtain

u1,5 ξ = −
1
3
k2 λ2 + 2μ −

2k2λ
ξ + C

−
2k2

ξ + C 2 25 29

In this case, ξ = kx + k3 λ2 − 4μ
tα

Γ 1 + α
.

Case 2

a0 = − 2k2μ, a1 = − 2k2λ, a2 = − 2k2, c = − k3 − λ2 + 4μ , k = k, 25 30

where k is free parameter.
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(2.1) (Hyperbolic function solution): When λ2− 4μ> 0 and μ 0,

u2,1 ξ = − 2k2μ−
2k2λ

− λ2 − 4μ tanh λ2 − 4μ 2 ξ + C − 2λμ

−
2k2

− λ2 − 4μ tanh λ2 − 4μ 2 ξ + C − 2λμ
2

25 31

(2.2) (Trigonometric function solution): When λ2− 4μ< 0 and μ 0,

u2,2 ξ = − 2k2μ−
4k2μλ

4μ− λ2 tan 4μ− λ2 2 ξ + C − λ

−
8μ2k2

4μ− λ2 tan 4μ− λ2 2 ξ + C − λ
2

25 32

(2.3) (Hyperbolic function solution): When λ2− 4μ> 0, μ = 0, and λ 0,

u2,3 ξ = − 2k2μ−
2k2λ2

cosh λ ξ + c + sinh λ ξ + C − 1

−
2k2λ2

cosh λ ξ + c + sinh λ ξ + C − 1 2

25 33

(2.4) (Rational function solution): When λ2− 4μ = 0, μ 0, and λ 0,

u2,4 ξ = − 2k2μ−
2k2λ3 ξ + C

− 2 λ ξ + C − 2
−

2k2λ4 ξ + C 2

2 λ ξ + C + 2 2 25 34

(2.5) When λ2− 4μ = 0, μ = 0, and λ = 0, we obtain

u2,5 ξ = − 2k2μ−
2k2λ
ξ + C

−
2k2

ξ + C 2 25 35

In case 2, we have ξ = kx + k3 − λ2 + 4μ
tα

Γ 1 + α
.

All the above Eqs. (25.25)–(25.29) and (25.31)–(25.35) are the exact solutions of the nonlinear time-fractional KdV equa-
tion for case 1 and case 2.

Example 25.2 We consider the following nonlinear time-fractional mKdV equation (Wazwaz 2009):

∂αu
∂tα

− 6u2
∂u
∂x

+
∂3u
∂x3

= 0, 0 < α ≤ 1, t > 0 25 36

Solution

Using the transformation Eqs. (25.2) and (25.3) in Eq. (25.36), it reduces to

− cu − 6ku2 u + k3u = 0 25 37

Integrating Eq. (25.37) with respect to ξ and substituting the integration constant to zero, it gives

− cu− 2ku3 + k3u = 0 25 38

The highest order linear and nonlinear terms in Eq. (25.38) are u and u3. So balancing the order of u and u3 by using the
concept in Eq. (25.8), we get

deg u = deg u3 ,

M + 2 = 3M M = 1
25 39
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Let us assume Eq. (25.6) as the solution of Eq. (25.38) at M = 1. This may be written as

u ξ = a0 + a1 exp −ϕ ξ 25 40

where a0 and a1 are constants. Using Eq. (25.7), from Eq. (25.40), we get

u ξ = − a1μ− a1λ exp −ϕ ξ − a1 exp − 2ϕ ξ 25 41

u ξ = a1λμ + 2a1μ + a1λ
2 exp −ϕ ξ + 3a1λ exp − 2ϕ ξ + 2a1 exp − 3ϕ ξ 25 42

Substituting Eqs. (25.40) and (25.42) into Eq. (25.38), we obtain a polynomial in exp (−nϕ(ξ)), n = 0, 1, 2, … with the
parameters λ, μ, k, c, a0, and a1 as follows

− 2ka30 + k3a1λμ− ca0 + − 6ka20a1 + 2k3a1μ + k3a1λ
2 − ca1 exp −ϕ ξ

+ − 6ka0a21 + 3k3a1λ exp − 2ϕ ξ + − 2ka31 + 2k3a1 exp − 3ϕ ξ = 0
25 43

Collecting the coefficients of exp (−nϕ(ξ)), n = 0, 1, 2, … and setting these to zero, we obtain the following system:

exp − 3ϕ ξ 2k3a1 − 2ka31,

exp − 2ϕ ξ 3k3λa1 − 6ka0a
2
1,

exp −ϕ ξ k3λ2a1 + 2k3μ a1 − 6ka20a1 − ca1,

Constant k3λμ a1 − 2ka30 − ca0

25 44

Solving the above nonlinear system, we get
Case 1

a0 = −
kλ
2
, a1 = − k, c = −

k3

2
λ2 − 4μ , k = k, 25 45

where k is a free parameter.
(1.1) (Hyperbolic function solution): Substituting Eq. (25.45) into Eq. (25.40) and using Eq. (25.9), we obtain

u1,1 ξ = −
kλ
2

−
k

− λ2 − 4μ tanh λ2 − 4μ 2 ξ + C − 2λμ
, 25 46

when λ2− 4μ> 0 and μ 0.
(1.2) (Trigonometric function solution): When λ2− 4μ< 0 and μ 0, we obtain

u1,2 ξ = −
kλ
2

−
2μ k

4μ− λ2 tan 4μ− λ2 2 ξ + C − λ
25 47

(1.3) (Hyperbolic function solution): When λ2− 4μ> 0, μ = 0, and λ 0, we get

u1,3 ξ = −
kλ
2

−
kλ

cosh λ ξ + c + sinh λ ξ + C − 1
25 48

(1.4) (Rational function solution): When λ2− 4μ = 0, μ 0, and λ 0, we have

u1,4 ξ = −
kλ
2

−
kλ2 ξ + C

− 2 λ ξ + C − 2
25 49

(1.5) When λ2− 4μ = 0, μ = 0, and λ = 0, we obtain

u1,5 ξ = −
kλ
2

−
k

ξ + C
25 50

In this case, ξ = kx +
k3

2
λ2 − 4μ

tα

Γ 1 + α
.
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Case 2

a0 =
kλ
2
, a1 = k, c = −

k3

2
λ2 − 4μ , k = k, 25 51

where k is a free parameter.
(2.1) (Hyperbolic function solution): When λ2− 4μ> 0 and μ 0,

u2,1 ξ =
kλ
2

+
k

− λ2 − 4μ tanh λ2 − 4μ 2 ξ + C − 2λμ
25 52

(2.2) (Trigonometric function solution): When λ2− 4μ< 0 and μ 0,

u2,2 ξ =
kλ
2

+
2μ k

4μ− λ2 tan 4μ− λ2 2 ξ + C − λ
25 53

(2.3) (Hyperbolic function solution): When λ2− 4μ> 0, μ = 0, and λ 0,

u2,3 ξ =
kλ
2

+
kλ

cosh λ ξ + c + sinh λ ξ + C − 1
25 54

(2.4) (Rational function solution): When λ2− 4μ = 0, μ 0, and λ 0,

u2,4 ξ =
kλ
2

+
kλ2 ξ + C

− 2 λ ξ + C − 2
25 55

(2.5) When λ2− 4μ = 0, μ = 0, and λ = 0, we obtain

u2,5 ξ =
kλ
2

+
k

ξ + C
25 56

Here, ξ = kx +
k3

2
λ2 − 4μ

tα

Γ 1 + α
.

All the above Eqs. (25.46)–(25.50) and (25.52)–(25.56) are the exact solutions of the nonlinear time-fractional mKdV equa-
tion for different cases.
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